S
silylene old
Guest
<p>This article appeared in last week's issue of <em>Science. </em>The final paragraph (<font color="#000080">blue</font>) is interesting, reads like a science fiction story!</p><p><br /><img src="http://sitelife.space.com/ver1.0/Content/images/store/6/0/c68cca3e-4e63-44a7-903a-faa2120d6008.Medium.jpg" alt="" /></p><p id="article-info"><em>Science</em> 17 October 2008:<br />Vol. 322. no. 5900, pp. 432 - 434<br />DOI: 10.1126/science.1163148</p><h2>The Extreme Kuiper Belt Binary 2001 QW<sub>322</sub></h2><p><strong>J.-M. Petit,<sup>1</sup><sup>,3</sup><sup>*</sup> J. J. Kavelaars,<sup>2</sup> B. J. Gladman,<sup>3</sup> J. L. Margot,<sup>4</sup> P. D. Nicholson,<sup>4</sup> R. L. Jones,<sup>5</sup> J. Wm. Parker,<sup>6</sup> M. L. N. Ashby,<sup>7</sup> A. Campo Bagatin,<sup>8</sup> P. Benavidez,<sup>8</sup> J. Coffey,<sup>3</sup> P. Rousselot,<sup>1</sup> O. Mousis,<sup>1</sup> P. A. Taylor<sup>4</sup> </strong></p><p>http://www.sciencemag.org/cgi/content/full/322/5900/432</p><p>We report on the mutual-orbit determination of 2001 QW<sub>322</sub>, a<sup> </sup>Kuiper Belt binary with a very large separation whose properties<sup> </sup>challenge binary-formation and -evolution theories. Six years<sup> </sup>of tracking indicate that the binary's mutual-orbit period is<sup> </sup><img src="http://www.sciencemag.org/math/ap.gif" border="0" alt="{approx}" />25 to 30 years, that the orbit pole is retrograde and inclined<sup> </sup>50° to 62° from the ecliptic plane, and, most surprisingly,<sup> </sup>that the mutual orbital eccentricity is <0.4. <font color="#ff0000"><strong>The semimajor<sup> </sup>axis of 105,000 to 135,000 kilometers is 10 times that of other<sup> </sup>near-equal-mass binaries</strong></font>. Because this weakly bound binary is<sup> </sup>prone to orbital disruption by interlopers, its lifetime in<sup> </sup>its present state is probably less than 1 billion years.<sup> </sup></p><p><sup>...snip....</sup></p><p>This KBO was discovered<sup> </sup>in data acquired on 24 August 2001 at the Canada-France-Hawaii<sup> </sup>Telescope by the Canada-France Ecliptic Plane Survey team. <font color="#ff0000">The<sup> </sup>two components had identical magnitudes of <em>m</em><sub>R</sub> <img src="http://www.sciencemag.org/math/sime.gif" border="0" alt="~=" /> 24.0 within the<sup> </sup>measurement uncertainties, implying essentially equal si</font>zes.<sup> </sup>Only one other equal-component binary was known at the time,<sup> </sup>asteroid (90) Antiope, with a magnitude difference of <img src="http://www.sciencemag.org/math/sim.gif" border="0" alt="~" />0.1 mag<sup> </sup>(<em>5</em>). However, 2001 QW<sub>322</sub> was obviously exceptional because <font color="#ff0000">the<sup> </sup>measured separation of <img src="http://www.sciencemag.org/math/sim.gif" border="0" alt="~" />4'' at its distance of 43 astronomical<sup> </sup>units (AU) corresponds to a sky-projected physical separation<sup> </sup>of 125,000 km (about one-third of the distance from Earth to<sup> </sup>the Moon), far larger than any other small-body binary</font>.<sup> </sup></p><p><sup>...snip..</sup></p><p>The large separation implied a mutual-orbit period of at least<sup> </sup>several years. Six years of tracking with the use of 4- to 8-m<sup> </sup>class telescopes (Fig. 1) resolved that 2001 QW<sub>322</sub>, an object<sup> </sup>in the main classical Kuiper Belt (<em>6</em>), has a low-eccentricity<sup> </sup>mutual orbit with a separation of 105,000 to 135,000 km, greater<sup> </sup>than any other known minor-planet binary (<em>7</em>). <font color="#ff0000">The separation<sup> </sup>is so large that this nearly equal-mass binary should be incredibly<sup> </sup>fragile to dynamical disruption, and its continued existence<sup> </sup>in the middle of the main Kuiper Belt puts strong constraints<sup> </sup>on the history of the Belt</font> (<em>8</em>).<sup> </sup></p><p><sup>...snip....</sup></p><sup><p><font size="2">The nominal densities shown in </font><font size="2">Fig. 2</font><font size="2"> are at the boundary between<sup> </sup>the density of a low-porosity, pure-water ice body and that<sup> </sup>of a mixture of water ice and silicate rocks (</font><em><font size="2">13</font></em><font size="2">). A thermal<sup> </sup>detection, mutual eclipse, or stellar occultation by the binary<sup> </sup>(all unlikely) would be necessary to further constrain the size,<sup> </sup>albedo, density, and hence the bulk composition of 2001 QW<sub>322</sub>.<sup> </sup></font></p><p><font size="3">snip... </font></p><p><font size="3" color="#ff0000">Given the very large separation (</font><font size="3" color="#ff0000">Fig. 3</font><font size="3" color="#ff0000">), such a binary is difficult<sup> </sup>to create and maintain. Of all the proposed KBO binary-formation<sup> </sup>scenarios (</font><em><font size="3" color="#ff0000">16</font></em><font size="3" color="#ff0000">–</font><em><font size="3" color="#ff0000">19</font></em><font size="3" color="#ff0000">), only the collision of two bodies close<sup> </sup>to a third one (</font><em><font size="3" color="#ff0000">16</font></em><font size="3" color="#ff0000">) can simply explain the primordial formation<sup> </sup>of such a system (</font><em><font size="3" color="#ff0000">7</font></em><font color="#ff0000"><font size="3">).<sup> </sup></font></font></p><p><font size="3">snip...</font></p><p><font size="3">Applying their method to the newly determined<sup> </sup>orbital and physical parameters for 2001 QW<sub>322</sub> and our nominal<sup> </sup>albedo, we find that the lifetime of this binary is 0.3 to 1<sup> </sup>billion years, which is two to three times shorter than the<sup> </sup>previous estimate. This finding implies one of two things: (i)<sup> </sup>Either 2001 QW<sub>322</sub> was created with its current mutual orbit<sup> </sup>early in the history of the solar system, in which case it is<sup> </sup>one of the few survivors of a population at least 50 to 100<sup> </sup>times larger, or (ii) this is a transitory object, evolving<sup> </sup>because of perturbation from interactions with smaller KBOs,<sup> </sup>from a population of more tightly bound binaries.</font></p><p><font size="3">snip....</font></p><p><font size="3" color="#ff0000">[This final paragraph from the authors is unusual in a Science paper!]</font></p><p><font color="#000080"><font size="3">For the likely mutual-orbit parameters, the average orbital<sup> </sup>speed is </font><font size="3"> 0.85 m/s or a mere 3 km hour<sup>–1</sup>, a slow human<sup> </sup>walking pace. An observer standing on one of the components<sup> </sup>(a very precarious situation, as the gravity is only 0.02 m/s<sup>2</sup><sup> </sup>or nearly 600 times smaller than on Earth) would see the other<sup> </sup>component subtend an angle of only 3 arc min, which corresponds<sup> </sup>to a pinhead seen at arm's length. The existence of the other<sup> </sup>component would not be in doubt, however, because when viewed<sup> </sup>at full phase it would be as luminous as Saturn seen from Earth,<sup> </sup>and it would move perceptibly from week to week.</font></font><sup> </sup></p></sup> <div class="Discussion_UserSignature"> <div class="Discussion_UserSignature" align="center"><em><font color="#0000ff">- - - - - - - - - - - - - - - - - - - - - -</font></em> </div><div class="Discussion_UserSignature" align="center"><font color="#0000ff"><em>I really, really, really miss the "first unread post" function.</em></font> </div> </div>