<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>Wow, I was able to get past the Pluck_Bluescreen_of_Death using the Livescience login. I will have to try this more in the future!Anyways, it seems as if photochemical abiotic generation of methane is being ignored by some of the scientists being quoted in this article. At least judging from the blaring headlines of The Sun (which is just about National Enquirer quality): http://www.thesun.co.uk/sol/homepage/news/article2133475.ece I do predict they are all going to have mud on their faces and reputation in the future, when we find no life, and instead confirm photochemical routes to methane generaation under Martian conditions. This is becoming just as silly as some of the NASA scientitsts' claims of life on the ALH 84001 meteorite. <I will refrain from mentioning 'polywater', 'cold fusion' ,'sonofusion' and parthenogenic stem cells>.</DIV></p><p><font face="Times New Roman"><span style="font-family:Verdana">Here is what methanogens do on earth, from Wikipedia.</span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><span style="font-family:Verdana"><font color="#993300">Methanogens are </font>
<font color="#993300">archaea</font><font color="#993300"> that produce </font>
<font color="#993300">methane</font><font color="#993300"> as a </font>
<font color="#993300">metabolic</font><font color="#993300"> byproduct in </font>
<font color="#993300">anoxic</font><font color="#993300"> conditions. They are common in </font>
<font color="#993300">wetlands</font><font color="#993300">, where they are responsible for </font>
<font color="#993300">marsh gas</font><font color="#993300">, and in the guts of animals such as </font>
<font color="#993300">ruminants</font><font color="#993300"> and </font>
<font color="#993300">humans</font><font color="#993300">, where they are responsible for the methane content of </font>
<font color="#993300">flatulence</font><font color="#993300">. In </font>
<font color="#993300">marine</font><font color="#993300"> </font>
<font color="#993300">sediments</font><font color="#993300"> </font>
<font color="#993300">biomethanation</font><font color="#993300"> is generally confined to where </font>
<font color="#993300">sulfates</font><font color="#993300"> are depleted, below the top layers. Others are </font>
<font color="#993300">extremophiles</font><font color="#993300">, found in environments such as </font>
<font color="#993300">hot springs</font><font color="#993300"> and submarine </font>
<font color="#993300">hydrothermal vents</font><font color="#993300"> as well as in the "solid" rock of the earth's crust, kilometers below the surface.</font></span><font color="#993300"><span style="font-family:Verdana"> </span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana"><font color="#000000"><font color="#0000ff">Methanogens are usually coccoid or rod shaped</font>.</font> There are over 50 described species of methanogens, which do not form a
<font color="#993300">monophyletic</font> group, although all methanogens belong to<font color="#993300"> </font>
<font color="#993300">Euryarchaeota</font><font color="#993300">. Methanogens are also </font>
<font color="#993300">anaerobic</font><font color="#993300">.</font> Although methanogens cannot function under aerobic conditions they can sustain oxygen stresses for prolonged times.</span><span style="font-family:Verdana"> </span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana">An exception is<font color="#993300"> </font>
<font color="#993300">Methanosarcina barkeri</font><font color="#993300">, which contains a </font>
<font color="#993300">superoxide dismutase</font> (SOD) enzyme and may survive longer. <font color="#0000ff">Some, called hydrogenotrophic, use </font>
<font color="#0000ff">carbon dioxide</font><font color="#0000ff"> (CO2) as a source of carbon, and </font>
<font color="#0000ff">hydrogen</font><font color="#0000ff"> as a reducing agent. Some of the CO2 is reacted with the hydrogen to produce methane, which produces an </font>
<font color="#0000ff">electrochemical gradient</font><font color="#0000ff"> across a membrane, used to generate </font>
<font color="#0000ff">ATP</font><font color="#0000ff"> through </font>
<font color="#0000ff">chemiosmosis</font><font color="#0000ff">. In contrast, plants and algae use water as their reducing agent.</font></span></font><span style="font-family:Verdana"><font color="#0000ff"> </font></span></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana">Although most marine biogenic methane is the result of CO2 reduction, a small amount is derived from
<font color="#993300">acetate</font><font color="#993300"> (CH3COO-). Archaea that </font>
<font color="#993300">catabolize</font><font color="#993300"> this for energy are referred to as acetotrophic or aceticlastic. Methylotrophic archaea utilize methylated compounds such as </font>
<font color="#993300">methylamines</font><font color="#993300">, </font>
<font color="#993300">methanol</font><font color="#993300">, and </font>
<font color="#993300">methanethiol</font><font color="#993300"> as well.</font></span></font><font color="#993300"><span style="font-family:Verdana"> </span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana">Methanogens play the vital ecological role in anaerobic environments of removing excess hydrogen and fermentation products that have been produced by other forms of
<font color="#993300">anaerobic respiration</font><font color="#993300">. Methanogens typically thrive in environments in which all other </font>
<font color="#993300">electron acceptors</font><font color="#993300"> (such as </font>
<font color="#993300">oxygen</font><font color="#993300">, </font>
<font color="#993300">nitrate</font><font color="#993300">, </font>
<font color="#993300">sulfate</font><font color="#993300">, and trivalent </font>
<font color="#993300">iron</font><font color="#993300">) have been depleted. In the deep rock they obtain their hydrogen from the thermal and radioactive breakdown of water.</font></span></font><font color="#993300"><span style="font-family:Verdana"> </span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana">Methanogens have been found in several extreme environments on Earth - buried under kilometres of ice in </span><span style="font-family:Verdana">Greenland</span><span style="font-family:Verdana"> and living in hot, dry desert soil. They can still reproduce from temperatures of 15 to 100 degrees Celsius.They are known to be the most common
<font color="#993300">prokaryotes</font><font color="#993300"> archaebacteria in deep subteranean habitats.</font></span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"></font><font color="#0000ff"><span style="font-family:Verdana">Live microbes making methane were found in a glacial ice core sample retrieved from three kilometres under </span><span style="font-family:Verdana">Greenland</span><span style="font-family:Verdana"> by researchers from the </span><span style="font-family:Verdana">University</span><span style="font-family:Verdana"> of </span><span style="font-family:Verdana">California</span><span style="font-family:Verdana">, </span><span style="font-family:Verdana">Berkeley</span><span style="font-family:Verdana">, </span><span style="font-family:Verdana">US</span><span style="font-family:Verdana">.</span><span style="font-family:Verdana"> </span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana">Another study has also discovered methanogens in a harsh environment on Earth. Researchers studied dozens of soil and vapour samples from five different desert environments in </span><span style="font-family:Verdana">Utah</span><span style="font-family:Verdana">, </span><span style="font-family:Verdana">Idaho</span><span style="font-family:Verdana"> and </span><span style="font-family:Verdana">California</span><span style="font-family:Verdana"> in the </span><span style="font-family:Verdana">US</span><span style="font-family:Verdana">, and in </span><span style="font-family:Verdana">Canada</span><span style="font-family:Verdana"> and </span><span style="font-family:Verdana">Chile</span><span style="font-family:Verdana">. Of these, five soil samples and three vapour samples from the vicinity of the Mars Desert Research Station in </span><span style="font-family:Verdana">Utah</span><span style="font-family:Verdana"> were found to have signs of viable methanogens.</span><span style="font-family:Verdana"> </span></font></span></font></p><p><font face="Times New Roman"><span style="font-family:Verdana"><font color="#993300"><span style="font-family:Verdana">Some scientists have proposed that the presence of methane in the
<font color="#993300">Martian</font> atmosphere may be indicative of native methanogens on that planet</span></font></span></font></p> <div class="Discussion_UserSignature"> Ron Bennett </div>