Question Does "dark matter" flow into black holes, and if not, why not?

The concept of "dark matter" has been accepted as a form of matter that does not interact with light or with regular matter by any mechanism other than gravity. It is supposed to be heavily concentrated in galaxies, adding mass that increases the orbital speeds of stars and bends light as it passes by at a great distance.

However, I have not read about how it behaves, otherwise.

It seems to me that it should flow into black holes quite easily, considering that it does not absorb energy from the stars' radiation and apparently does not emit any radiation, itself.

So, unless it has some sort of self-repulsion, I would expect it to simply fall into black holes even more readily than visible matter does.

But, that would seem to be a process that would deplete the relative density of dark matter in the centers of galaxies, compared to the density of regular matter. Is that what we see?

Or, is there some need to infer some sort of self-repulsion by dark matter, so that it develops some sort of "dark pressure" that limits its density?

Thoughts?
 
Feb 14, 2020
104
25
1,610
The concept of "dark matter" has been accepted as a form of matter that does not interact with light or with regular matter by any mechanism other than gravity. It is supposed to be heavily concentrated in galaxies, adding mass that increases the orbital speeds of stars and bends light as it passes by at a great distance.

However, I have not read about how it behaves, otherwise.

It seems to me that it should flow into black holes quite easily, considering that it does not absorb energy from the stars' radiation and apparently does not emit any radiation, itself.

So, unless it has some sort of self-repulsion, I would expect it to simply fall into black holes even more readily than visible matter does.

But, that would seem to be a process that would deplete the relative density of dark matter in the centers of galaxies, compared to the density of regular matter. Is that what we see?

Or, is there some need to infer some sort of self-repulsion by dark matter, so that it develops some sort of "dark pressure" that limits its density?

Thoughts?
Dark Matter is everywhere including where matter-energy is which we know is sparse and similarly where there is higher density of matter as in neutron stars or blackholes. DM creates all matter-energy from itself. Please see my April 13, 2022 post in this community.
 
Sep 11, 2020
74
28
1,560
In my opinion Black holes are inside of space time and dark matter is not so it does not drain into a black hole. It can be condensed into Liquid Dark Matter(LDM) as it circulates through the galaxy. If the black hole becomes active it will cause the LDM to vaporize into Gaseous Dark Matter(GDM) which will lower the concentration of dark matter in the galaxy. The vaporized dark matter will blast out of the poles pulling regular matter with it. Eventually the turbulence on the edges of the jets will cause entrained LDM to vaporize Which will reheat and further accelerate the jets. Once the jets run out of LDM they will mushroom out coalesce with gas/dust and rain back down if not on this galaxy on the next one that comes down the filament.
 
Feb 14, 2020
104
25
1,610
Ed
Greetings!
Adjectives LDM GDM apply to what is matter, other than the fact that Gravity is created while matter-energy are being formed by DM, there are no such attributes directly associated with DM. However, DM to Matter Energy (ME) transformation will exhibit properties of those phases in which the created ME comes into being or during the transformation.

Thanks.
Ravi
(Dr. Ravi Sharma, Ph.D. USA)
NASA Apollo Achievement Award
Chair, Ontology Summit 2022
Particle and Space Physics
Senior Enterprise Architect
 
Dec 29, 2022
65
5
35
From the images I have seen, the center of our galaxy appears to be a rotating braid of plasma. I'll bet it has a net positive charge. And I'll bet the center of that spin has a humongous magnetic dipole field. I'd say any wondering charge that got inside that ring, would be accelerated N and S of the rotation. Who knows, it might be fed on a regular basis. The electrons would be charged and contracted to the proton level, anti-protons. Then gamma radiation could proceed. But we get two gigantic galactic bubbles of fuel. If those two bubbles discharged......it would put a super nova to shame. The ultimate destruction. A little, big bang.

It could have already happened thousands of years ago, and we not know it.

The past we haven't seen yet.
 
I would think DM could be drawn into any gravity well, including BHs. The reason it would be hard to find much on this is because both are invisible. We must infer their presence. Surrounding visible matter reveals a BH, or gravity waves in tight binaries. But what would reveal the accreting of DM?
 

ASK THE COMMUNITY