Modelling ceramics for space products is easier than is modelling metals and metal-ceramic interfaces. Ceramics can be built from cheaper chemical components, while metal items need metal ore or pure metal. For reducing Monte Carlo run time, a ceramic wave function is easy enough to find. From a certain distance away from the node (atom), the lattice spacing doesn't matter. Merely staggering the wavefront and throwing the functions in a reverse projector gives a coarse simplification. Also, Boehmite is cheaper.
To make electromagnetically active objects, it is necessary to find not just one decently minimal energy wavefront, you need to find all the wavefronts electrons peak at given an excitation, then you put them in a reverse projector. At some point the fixed node ceramic atom locations need to be combined respecting fermion math, with the new electrons locations data.
I suspect near-field generating nanotech will be a jobs creator, but not as profitable as just the ceramic and iron bulk products. Without ice moon mines, I'd think only NASA would easily bother scaling up EM products too much. There is a continuum of product costs: sapphire with many inclusions might be moderately expensive, and rare metals like gold are even more expensive than are RF coil metals, but might be discovered in the solar system. I'm not sure whether antennae are cheap or expensive, giant radar arrays being there this half century or next half century, in the balance.
To make electromagnetically active objects, it is necessary to find not just one decently minimal energy wavefront, you need to find all the wavefronts electrons peak at given an excitation, then you put them in a reverse projector. At some point the fixed node ceramic atom locations need to be combined respecting fermion math, with the new electrons locations data.
I suspect near-field generating nanotech will be a jobs creator, but not as profitable as just the ceramic and iron bulk products. Without ice moon mines, I'd think only NASA would easily bother scaling up EM products too much. There is a continuum of product costs: sapphire with many inclusions might be moderately expensive, and rare metals like gold are even more expensive than are RF coil metals, but might be discovered in the solar system. I'm not sure whether antennae are cheap or expensive, giant radar arrays being there this half century or next half century, in the balance.