M
MeteorWayne
Guest
http://www.nasa.gov/home/hqnews/2010/au ... ssion.html
WASHINGTON -- NASA and the European Space Agency (ESA) have embarked on a joint program to explore Mars in the coming decades and selected the five science instruments for the first mission.
The ExoMars Trace Gas Orbiter, scheduled to launch in 2016, is the first of three joint robotic missions to the Red Planet. It will study the chemical makeup of the Martian atmosphere with a 1000-fold increase in sensitivity over previous Mars orbiters. The mission will focus on trace gases, including methane, which could be potentially geochemical or biological in origin and be indicators for the existence of life on Mars. The mission also will serve as an additional communications relay for Mars surface missions beginning in 2018.
"Independently, NASA and ESA have made amazing discoveries up to this point," said Ed Weiler, associate administrator of NASA's Science Mission Directorate in Washington. "Working together, we'll reduce duplication of effort, expand our capabilities and see results neither ever could have achieved alone."
NASA and ESA invited scientists worldwide to propose the spacecraft's instruments. The five selected were from 19 proposals submitted in January. Both agencies evaluated the submissions and chose those with the best science value and lowest risk.
The selection of the instruments begins the first phase of the new NASA-ESA alliance for future ventures to Mars. The instruments and the principal investigators are:
-- Mars Atmosphere Trace Molecule Occultation Spectrometer -- A spectrometer designed to detect very low concentrations of the molecular components of the Martian atmosphere: Paul Wennberg, California Institute of Technology, Pasadena Calif.
-- High Resolution Solar Occultation and Nadir Spectrometer -- A spectrometer designed to detect traces of the components of the Martian atmosphere and to map where they are on the surface: Ann C. Vandaele, Belgian Institute for Space Aeronomy, Brussels, Belgium.
-- ExoMars Climate Sounder -- An infrared radiometer that provides daily global data on dust, water vapor and other materials to provide the context for data analysis from the spectrometers: John Schofield, NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif.
-- High Resolution Color Stereo Imager -- A camera that provides four-color stereo imaging at a resolution of two million pixels over an 8.5 km swath: Alfred McEwen, University of Arizona.
-- Mars Atmospheric Global Imaging Experiment -- A wide-angle, multi-spectral camera to provide global images of Mars in support of the other instruments: Bruce Cantor, Malin Space Science Systems, San Diego, Calif.
WASHINGTON -- NASA and the European Space Agency (ESA) have embarked on a joint program to explore Mars in the coming decades and selected the five science instruments for the first mission.
The ExoMars Trace Gas Orbiter, scheduled to launch in 2016, is the first of three joint robotic missions to the Red Planet. It will study the chemical makeup of the Martian atmosphere with a 1000-fold increase in sensitivity over previous Mars orbiters. The mission will focus on trace gases, including methane, which could be potentially geochemical or biological in origin and be indicators for the existence of life on Mars. The mission also will serve as an additional communications relay for Mars surface missions beginning in 2018.
"Independently, NASA and ESA have made amazing discoveries up to this point," said Ed Weiler, associate administrator of NASA's Science Mission Directorate in Washington. "Working together, we'll reduce duplication of effort, expand our capabilities and see results neither ever could have achieved alone."
NASA and ESA invited scientists worldwide to propose the spacecraft's instruments. The five selected were from 19 proposals submitted in January. Both agencies evaluated the submissions and chose those with the best science value and lowest risk.
The selection of the instruments begins the first phase of the new NASA-ESA alliance for future ventures to Mars. The instruments and the principal investigators are:
-- Mars Atmosphere Trace Molecule Occultation Spectrometer -- A spectrometer designed to detect very low concentrations of the molecular components of the Martian atmosphere: Paul Wennberg, California Institute of Technology, Pasadena Calif.
-- High Resolution Solar Occultation and Nadir Spectrometer -- A spectrometer designed to detect traces of the components of the Martian atmosphere and to map where they are on the surface: Ann C. Vandaele, Belgian Institute for Space Aeronomy, Brussels, Belgium.
-- ExoMars Climate Sounder -- An infrared radiometer that provides daily global data on dust, water vapor and other materials to provide the context for data analysis from the spectrometers: John Schofield, NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif.
-- High Resolution Color Stereo Imager -- A camera that provides four-color stereo imaging at a resolution of two million pixels over an 8.5 km swath: Alfred McEwen, University of Arizona.
-- Mars Atmospheric Global Imaging Experiment -- A wide-angle, multi-spectral camera to provide global images of Mars in support of the other instruments: Bruce Cantor, Malin Space Science Systems, San Diego, Calif.