I am looking for a photo-Pale Blue dot. Thanks!

Status
Not open for further replies.
F

fragrance

Guest
Hello,<br /><br />I am looking for a photo took by Voyager I in 1990 of the solar systerm. And our earth was just a smalle dot in the sunlight, Carl Sagan called it <font color="blue">pale blue dot.</font><br /> The photo I have is not very clear which was dwnloaded from solarviews. com. Need your help. <img src="/images/icons/wink.gif" /><br /><font color="orange">Thanks for your help! </font>/safety_wrapper>
 
H

harmonicaman

Guest
F

fragrance

Guest
Thank you, harmonicaman,<br />for all those information. <img src="/images/icons/smile.gif" />
 
3

3488

Guest
Looking for this??<br /><br />This image of the Earth is one of 60 frames taken by the Voyager 1 spacecraft on February 14, 1990 from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. This image the Earth is a mere point of light, a crescent only 0.12 pixel in size. Our planet was caught in the center of one of the scattered light rays resulting from taking the image so close to the sun. <br /><br />The Earth & Sun were both seen against the constellation of Eridanus the River, close to the border with Lepus the Hare. <div class="Discussion_UserSignature"> <p><font color="#000080">"I suddenly noticed an anomaly to the left of Io, just off the rim of that world. It was extremely large with respect to the overall size of Io and crescent shaped. It seemed unbelievable that something that big had not been visible before".</font> <em><strong><font color="#000000">Linda Morabito </font></strong><font color="#800000">on discovering that the Jupiter moon Io was volcanically active. Friday 9th March 1979.</font></em></p><p><font size="1" color="#000080">http://www.launchphotography.com/</font><br /><br /><font size="1" color="#000080">http://anthmartian.googlepages.com/thisislandearth</font></p><p><font size="1" color="#000080">http://web.me.com/meridianijournal</font></p> </div>
 
3

3488

Guest
These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, February 14, 1990 which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). <br /><br />The solar system as seen from the Voyager 1 spacecraft covered a region of sky covering Eridanus the River (Sun, Venus & Earth) as well as Lepus the Hare, Orion the Hunter & Columba the Dove. <div class="Discussion_UserSignature"> <p><font color="#000080">"I suddenly noticed an anomaly to the left of Io, just off the rim of that world. It was extremely large with respect to the overall size of Io and crescent shaped. It seemed unbelievable that something that big had not been visible before".</font> <em><strong><font color="#000000">Linda Morabito </font></strong><font color="#800000">on discovering that the Jupiter moon Io was volcanically active. Friday 9th March 1979.</font></em></p><p><font size="1" color="#000080">http://www.launchphotography.com/</font><br /><br /><font size="1" color="#000080">http://anthmartian.googlepages.com/thisislandearth</font></p><p><font size="1" color="#000080">http://web.me.com/meridianijournal</font></p> </div>
 
F

fragrance

Guest
Thanks A Lot, 3488.<br /><br />I read one post on another MB about the pale blue dot without the picture, although it's famous one, but I did not see it before. So I start to looking for it. <br /> <br />Our earth is just a mote of dust suspended in a sunbeam...
 
F

fragrance

Guest
Really thanks you, Search.And you tell me another wonderful website for astrophotos.<br /><br />Love Carl Sagan's writting:<br /><font color="blue">We succeeded in taking that picture [from deep space], and, if you look at it, you see a dot. That's here. That's home. That's us. On it, everyone you ever heard of, every human being who ever lived, lived out their lives. The aggregate of all our joys and sufferings, thousands of confident religions, ideologies and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilizations, every king and peasant, every young couple in love, every hopeful child, every mother and father, every inventor and explorer, every teacher of morals, every corrupt politician, every superstar, every supreme leader, every saint and sinner in the history of our species, lived there on a mote of dust, suspended in a sunbeam.</font><br /> <br />Cheers
 
C

CalliArcale

Guest
Another good site (and the official home for the Pale Blue Dot and other JPL pictures which have been prettied up for public consumption) is photojournal.jpl.nasa.gov -- the Planetary Photojournal. This site rarely has raw data; the images have been adjusted, such as for color balance, cropping them to make them look nice, orthorectifying them, etc. In the case of the Pale Blue Dot, it's greatly computer enhanced; Earth was barely visible. <br /><br />(URL corrected.) <div class="Discussion_UserSignature"> <p> </p><p><font color="#666699"><em>"People assume that time is a strict progression of cause to effect, but actually from a non-linear, non-subjective viewpoint it's more like a big ball of wibbly wobbly . . . timey wimey . . . stuff."</em>  -- The Tenth Doctor, "Blink"</font></p> </div>
 
3

3488

Guest
Thanks CalliArcale. <br /><br />I understand that on the extreme blowups & enhancements, the Moon was visible, Mars I think was finally detected & the Jupiter moon Ganymede was also seen (but not on the usual reproductions). <div class="Discussion_UserSignature"> <p><font color="#000080">"I suddenly noticed an anomaly to the left of Io, just off the rim of that world. It was extremely large with respect to the overall size of Io and crescent shaped. It seemed unbelievable that something that big had not been visible before".</font> <em><strong><font color="#000000">Linda Morabito </font></strong><font color="#800000">on discovering that the Jupiter moon Io was volcanically active. Friday 9th March 1979.</font></em></p><p><font size="1" color="#000080">http://www.launchphotography.com/</font><br /><br /><font size="1" color="#000080">http://anthmartian.googlepages.com/thisislandearth</font></p><p><font size="1" color="#000080">http://web.me.com/meridianijournal</font></p> </div>
 
C

CalliArcale

Guest
No, the Moon was never visible, nor was Ganymede or Mars. However, they were able to find possible evidence of a large satellite of Earth. <img src="/images/icons/wink.gif" /> (Granted, their conclusions may have been somewhat skewed by the fact they definitely knew that satellite existed.) <div class="Discussion_UserSignature"> <p> </p><p><font color="#666699"><em>"People assume that time is a strict progression of cause to effect, but actually from a non-linear, non-subjective viewpoint it's more like a big ball of wibbly wobbly . . . timey wimey . . . stuff."</em>  -- The Tenth Doctor, "Blink"</font></p> </div>
 
F

fragrance

Guest
Thank you, CalliArcale<br /><br />That's cool.<br /><br />The NASA's website is really amazing place. I get a lot of useful information from it. Although sometimes get a bit confuzed by its links. <br /><br />Cheers
 
3

3488

Guest
The Solar System. Voyager 1 . February 14th 1990. <br /><br />The cameras of Voyager 1 on February 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever "portrait" of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the n <div class="Discussion_UserSignature"> <p><font color="#000080">"I suddenly noticed an anomaly to the left of Io, just off the rim of that world. It was extremely large with respect to the overall size of Io and crescent shaped. It seemed unbelievable that something that big had not been visible before".</font> <em><strong><font color="#000000">Linda Morabito </font></strong><font color="#800000">on discovering that the Jupiter moon Io was volcanically active. Friday 9th March 1979.</font></em></p><p><font size="1" color="#000080">http://www.launchphotography.com/</font><br /><br /><font size="1" color="#000080">http://anthmartian.googlepages.com/thisislandearth</font></p><p><font size="1" color="#000080">http://web.me.com/meridianijournal</font></p> </div>
 
3

3488

Guest
Sun Venus & Earth. Voyager 1 . February 14th 1990. <br /><br />This color image of the Sun, Earth and Venus was taken by the Voyager 1 spacecraft February 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The "rays" around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resultin <div class="Discussion_UserSignature"> <p><font color="#000080">"I suddenly noticed an anomaly to the left of Io, just off the rim of that world. It was extremely large with respect to the overall size of Io and crescent shaped. It seemed unbelievable that something that big had not been visible before".</font> <em><strong><font color="#000000">Linda Morabito </font></strong><font color="#800000">on discovering that the Jupiter moon Io was volcanically active. Friday 9th March 1979.</font></em></p><p><font size="1" color="#000080">http://www.launchphotography.com/</font><br /><br /><font size="1" color="#000080">http://anthmartian.googlepages.com/thisislandearth</font></p><p><font size="1" color="#000080">http://web.me.com/meridianijournal</font></p> </div>
 
F

fragrance

Guest
Thanks again 3488. <img src="/images/icons/smile.gif" /><br /><br />In the last photo, it's improssible for us too find where our earth is without special processing. What a cool photo! <br /> <br />Thanks for the informantion in details.<br /><br />Cheers
 
Status
Not open for further replies.

Latest posts