Mechanical Electric Theory

Status
Not open for further replies.
S

sinkarma86

Guest
<p><strong><font size="1"><em><font color="#0000ff">http://academia.wikia.com/wiki/Mechanical_Electric_Theory<span class="toctoggle">&nbsp;</span></font></em></font></strong></p><p><span class="toctoggle"><font size="1" color="#0000ff"><strong><em>[hide]</em></strong></font></span></p><ul><li class="toclevel-1"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">1</span> <span class="toctext">Relations between energy, power, torque, distance, velocity, radius etc.</span> </font></em></font></strong></li><li class="toclevel-1"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">2</span> <span class="toctext">Voltage drops vs. Behavior and effects of distributed charge, mass</span> </font></em></font></strong><ul><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">2.1</span> <span class="toctext">Voltage drops</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">2.2</span> <span class="toctext">Behavior of distributed mass</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">2.3</span> <span class="toctext">Behavior of distributed charge</span> </font></em></font></strong><ul><li class="toclevel-3"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">2.3.1</span> <span class="toctext">Effect on real power (heat dissipation)</span> </font></em></font></strong></li></ul></li></ul></li><li class="toclevel-1"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">3</span> <span class="toctext">Assumption that capacitive voltage drop is fundamentally equivalent to applied voltage</span> </font></em></font></strong></li><li class="toclevel-1"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4</span> <span class="toctext">Tenets of Mechanical Electric Theory</span> </font></em></font></strong><ul><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.1</span> <span class="toctext">Givens:</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.2</span> <span class="toctext">Result #1: Greater inductance for a given resistance increases torque output (angular momentum per unit time) vs. dissipated heat (energy per unit time).</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.3</span> <span class="toctext">Result #2: The L/R time constant determines the ratio of mechanical power to rate change in power.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.4</span> <span class="toctext">Result #3: The ratio of mechanical power to dissipated heat is proportional to change in angle.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.5</span> <span class="toctext">Result #4: To do a certain amount of work, the power must increase at a rate proportional to the square of the needed power.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.6</span> <span class="toctext">Result #5: Electromagnetic radiation increases with the square of charge acceleration</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.7</span> <span class="toctext">Result #6: Torque produced by electrical energy increases with the power factor</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.8</span> <span class="toctext">Result #7: Efficiency of converting electrical energy into mechanical energy increases with the RC time constant and the angular velocity.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.9</span> <span class="toctext">Result #8: Mechanical energy transfer divided by electrical energy transfer equals frequency of rotation divided by cutoff frequency.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.10</span> <span class="toctext">Result #9: Apparent power is the product of electrical energy times angular velocity</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.11</span> <span class="toctext">Result #10: The ratio of mechanical energy to electrical energy is resistance^2 * capacitance / inductance</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.12</span> <span class="toctext">Result #11: Net acceleration results in an acceleration vector that is parallel to the radius of curvature.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.13</span> <span class="toctext">Result #12: Angular velocity increases as the L/R time constant decreases.</span> </font></em></font></strong></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.14</span> <span class="toctext">Result #13: Mechanical power delivered for a given energy in transit is inversely proportional to the RC time constant.</span> </font></em></font></strong><ul><li class="toclevel-3"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.14.1</span> <span class="toctext">Refer to Result #11</span> </font></em></font></strong></li></ul></li><li class="toclevel-2"><strong><font size="1"><em><font color="#0000ff"><span class="tocnumber">4.15</span> <span class="toctext">Result #14: Mechanical power / apparent power = i</span> </font></em></font></strong></li></ul></li></ul><p><font size="1" color="#0000ff"><strong><em>Mechanical Electric Theory (as of 00:24, 19 September 2008)</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>== Relations between energy, power, torque, distance, velocity, radius etc. ==</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;force=energy/distance<br />:&nbsp;force=power/velocity<br />:&nbsp;force=(change of power/change of time)/acceleration</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;energy/power=distance/velocity<br />:&nbsp;power/(change of power/change of time)=velocity/acceleration</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;torque=(change of angular momentum/time)<br />:&nbsp;torque=force*radius<br />:&nbsp;force=(change of angular momentum/time)/radius</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;energy/(change of angular momentum/time)=distance/radius=angle<br />:&nbsp;power/(change of angular momentum/time)=velocity/radius=angular velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;energy/power=angle/angular velocity<br />:&nbsp;power/(change of power/change in time)=angular velocity/angular acceleration</em></strong></font></p><p><br /><font size="1" color="#0000ff"><strong><em>== Voltage drops vs. Behavior and effects of distributed charge, mass ==<br />=== Voltage drops ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:''Applied voltage=''<br />:&nbsp;Capacitive voltage drop<br />:&nbsp;+Resistive voltage drop<br />:&nbsp;+Inductive voltage drop</em></strong></font></p><p><br /><font size="1" color="#0000ff"><strong><em>:''Capacitive voltage drop=''<br />:&nbsp;(1/capacitance)*charge</em></strong></font></p><p><br /><font size="1" color="#0000ff"><strong><em>:''Resistive voltage drop=''<br />:&nbsp;resistance*current</em></strong></font></p><p><br /><font size="1" color="#0000ff"><strong><em>:''Inductive voltage drop=''<br />:&nbsp;inductance*(change of current/change of time)</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Behavior of distributed mass ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;linear mass density=distributed mass/distance of distribution</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;linear mass density*velocity=mass flow rate<br />:&nbsp;linear mass density*velocity^2=force<br />:&nbsp;linear mass density*velocity^3=power</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Behavior of distributed charge ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;linear charge density=(charge/mass)*linear mass density</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:''Capacitive voltage drop=''<br />:&nbsp;(1/capacitance)*linear charge density*distance</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:''Resistive voltage drop=''<br />:&nbsp;resistance*linear charge density*velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:''Inductive voltage drop=''<br />:&nbsp;inductance*linear charge density*acceleration</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>==== Effect on real power (heat dissipation) ====</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;resistive voltage drop=resistance*(charge/mass)*mass flow rate<br />:&nbsp;real power=resistance*(charge/mass)^2*mass flow rate^2</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>== Assumption that capacitive voltage drop is fundamentally equivalent to applied voltage ==</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;If capacitive voltage drop=applied voltage:</em></strong></font></p><p><br /><font size="1" color="#0000ff"><strong><em>::&nbsp;resistive voltage drop= -inductive voltage drop<br />::&nbsp;resistance*current= -inductance*(change of current/change in time)<br />::&nbsp;resistance*current/linear charge density= -inductance*(change of current/change in time)/linear charge density<br />::&nbsp;resistance*velocity= -inductance*acceleration<br />::&nbsp;inductance/resistance= -velocity/acceleration</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>== Tenets of Mechanical Electric Theory&nbsp; ==</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Givens: ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>* The theory assumes that batteries supply voltage via a capactive voltage drop and that inductive and resistive voltage drops have the same magnitude but opposite polarity.<br />* The theory assumes that Kirchoff's Circuit Laws and the Law of Conservation of Energy, Conservation of Angular Momentum, and Conservation of Momentum are basically true.<br />* The theory assumes that what is determined in this theory is strictly deduced from the formulas of conventional theory, yet it insists that those same equations strictly lead to an area that is beyond the conventional understanding.<br />* The theory assumes that mechanical energy and electrical energy are to be held as separate concepts.</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>#&nbsp;'''Assumption that capacitive voltage drop is fundamentally equivalent to applied voltage'''<br />:#&nbsp;capacitive voltage drop=applied voltage=voltage<br />:#&nbsp;inductive voltage drop= -resistive voltage drop<br />:#&nbsp;inductance/resistance= -velocity/acceleration <br />#&nbsp;real power=resistance*current^2=power of dissipated heat<br />#&nbsp;apparent power=voltage*current<br />#&nbsp;torque=magnetic flux*current<br />#&nbsp;torque=inductance*current^2<br />#&nbsp;electrical energy=voltage*charge<br />#&nbsp;energy=torque*angle=mechanical energy</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #1: Greater inductance for a given resistance increases torque output (angular momentum per unit time) vs. dissipated heat (energy per unit time). ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;apparent power/torque=voltage/magnetic flux<br />:&nbsp;apparent power/torque=voltage/[current*inductance]<br />:&nbsp;torque=apparent power*[current*inductance/voltage]<br />:&nbsp;torque=[real power/power factor]*[current*inductance/voltage]<br />:&nbsp;torque=[real power/[current*resistance/voltage]]*[current*inductance/voltage]<br />:&nbsp;torque=[real power*[voltage/[current*resistance]]*[current*inductance/voltage]<br />:&nbsp;torque=real power*[inductance/resistance]</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #2: The L/R time constant determines the ratio of mechanical power to rate change in power. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;inductance/resistance=torque/real power<br />:&nbsp;inductance/resistance= -velocity/acceleration<br />:&nbsp;inductance/resistance= -power/(change in power/change in time)</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #3: The ratio of mechanical power to dissipated heat is proportional to change in angle. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;torque/real power= -velocity/acceleration<br />:&nbsp;torque/real power= -momentum/force<br />:&nbsp;torque*[ -force/momentum]=real power<br />:&nbsp;[power/angular velocity]*[ -power/velocity]/momentum=real power<br />:&nbsp;power^2/real power=angular velocity* -velocity*momentum<br />:&nbsp;power^2/real power=[velocity/radius]* -velocity*[mass*velocity]<br />:&nbsp;power^2/real power=mass*[ -velocity^3/radius]<br />:&nbsp;real power*mass*[ -velocity^3/radius]=power^2<br />:&nbsp;real power*mass*[ -velocity^3/radius]=power*[linear mass density*velocity^3]<br />:&nbsp;real power*mass*[ -velocity^3/radius]=power*[mass*velocity^3/distance]<br />:&nbsp;power=real power* -distance/radius<br />:&nbsp;power=real power* -angle<br />:&nbsp;power/real power= -angle<br />:&nbsp;power/real power= -distance/radius<br />:&nbsp;power/real power= -energy/torque<br />:&nbsp;torque/real power= -energy/power<br />:&nbsp;torque/real power= -distance/velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #4: To do a certain amount of work, the power must increase at a rate proportional to the square of the needed power. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;-velocity/acceleration=-distance/velocity<br />:&nbsp;velocity/acceleration=distance/velocity<br />:&nbsp;velocity^2=distance*acceleration<br />:&nbsp;force^2*velocity^2=force^2*distance*acceleration<br />:&nbsp;power^2=energy*(change in power/change in time)</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #5: Electromagnetic radiation increases with the square of charge acceleration ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;real power/torque= -acceleration/velocity<br />:&nbsp;real power= -torque*acceleration/velocity<br />:&nbsp;real power= -mass*acceleration^2*radius/velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;power=real power* -angle<br />:&nbsp;power=[ -mass*acceleration^2*radius/velocity]* -angle<br />:&nbsp;power=[ -mass*acceleration^2*radius/velocity]* -[distance/radius]<br />:&nbsp;power=mass*acceleration^2*distance/velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #6: Torque produced by electrical energy increases with the power factor ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;electrical energy/torque=<br />:&nbsp;[voltage*charge]/[magnetic flux*current]=<br />:&nbsp;[voltage*distance]/[magnetic flux*velocity]=<br />:&nbsp;[voltage*energy]/[magnetic flux*power]=<br />:&nbsp;[voltage*torque*angle]/[magnetic flux*power]=<br />:&nbsp;[voltage*current*angle]/[power]=<br />:&nbsp;[apparent power*angle]/[power]=<br />:&nbsp;[apparent power*angle]/[-real power*angle]=<br />:&nbsp;-1/power factor</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #7: Efficiency of converting electrical energy into mechanical energy increases with the RC time constant and the angular velocity. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;electrical energy/torque=-1/power factor<br />:&nbsp;electrical energy/[torque*angle]=-1/[angle*power factor]<br />:&nbsp;electrical energy/energy=-1/[angle*power factor]<br />:&nbsp;electrical energy*power factor=-energy/angle<br />:&nbsp;[voltage*charge]*[resistance*current/voltage]=-energy/angle<br />:&nbsp;[charge]*[resistance*current]=-energy/angle<br />:&nbsp;[charge]*[resistance*current]=-energy/[distance/radius]<br />:&nbsp;[charge]*[resistance*current]*[distance/radius]=-energy<br />:&nbsp;resistance*linear charge density^2*distance*velocity*[distance/radius]=-energy<br />:&nbsp;resistance*charge^2*velocity/radius=-energy<br />:&nbsp;resistance*charge^2*angular velocity=-energy<br />:&nbsp;resistance*charge*charge*voltage/voltage*angular velocity=-energy<br />:&nbsp;resistance*(charge/voltage)*(charge*voltage)*angular velocity=-energy<br />:&nbsp;resistance*capacitance*(charge*voltage)*angular velocity=-energy<br />:&nbsp;RC time constant*electrical energy*angular velocity=-energy<br />:&nbsp;RC time constant*angular velocity=-energy/electrical energy</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #8: Mechanical energy transfer divided by electrical energy transfer equals frequency of rotation divided by cutoff frequency. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;RC time constant*angular velocity=-energy/electrical energy<br />:&nbsp;1/(2pi*cutoff frequency)*(turns*2pi/time)=-energy/electrical energy<br />:&nbsp;1/(cutoff frequency)*(turns/time)=-energy/electrical energy<br />:&nbsp;(turns/time)/(cutoff frequency)=-energy/electrical energy</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #9: Apparent power is the product of electrical energy times angular velocity ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;RC time constant*angular velocity=-energy/electrical energy<br />:&nbsp;RC time constant=(-energy/electrical energy)/(angular velocity)<br />:&nbsp;RC time constant=(-energy/electrical energy)/(velocity/distance)<br />:&nbsp;RC time constant=(-energy/electrical energy)/(current/charge)<br />:&nbsp;RC time constant=(-energy/voltage)/(current)<br />:&nbsp;RC time constant=-energy/apparent power<br />:&nbsp;apparent power=electrical energy*angular velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #10: The ratio of mechanical energy to electrical energy is resistance^2 * capacitance / inductance ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;inductance/resistance=torque/real power<br />:&nbsp;L/R time constant=torque/real power<br />:&nbsp;(L/R time constant)/(RC time constant)=(inductance/resistance)/(resistance*capacitance)<br />:&nbsp;(L/R time constant)/(RC time constant)=(torque/real power)/(-energy/apparent power)<br />:&nbsp;(L/R time constant)/(RC time constant)=-1/(power factor*angle)<br />:&nbsp;(L/R time constant)/(RC time constant)=electrical energy/energy</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;RC time constant=-energy/apparent power</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;(L/R time constant)*apparent power/energy=-electrical energy/energy<br />:&nbsp;(L/R time constant)*apparent power=-electrical energy<br />:&nbsp;(L/R time constant)=-electrical energy/apparent power</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;apparent power=electrical energy*angular velocity</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;L/R time constant=(-1/angular velocity)</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;(L/R time constant)*angular velocity=-1<br />:&nbsp;(-velocity/acceleration)*angular velocity=-1<br />:&nbsp;(velocity/acceleration)*(velocity/radius)=1<br />:&nbsp;velocity^2=acceleration*radius</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #11: Net acceleration results in an acceleration vector that is parallel to the radius of curvature. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;velocity^2=acceleration*radius<br />:&nbsp;velocity^2=acceleration*distance<br />:&nbsp;radius=distance</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #12: Angular velocity increases as the L/R time constant decreases. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;velocity/radius=velocity/distance<br />:&nbsp;angular velocity=-resistance/inductance<br />:&nbsp;(L/R time constant)*angular velocity=-1</em></strong></font></p><p><font size="1" color="#0000ff"><strong></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #13: Mechanical power delivered for a given energy in transit is inversely proportional to the RC time constant. ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;(L/R time constant)*(velocity/radius)=-1<br />:&nbsp;(RC time constant)*(velocity/radius)=energy/electrical energy<br />:&nbsp;(RC time constant)*(velocity/radius)=-1/[angle*power factor] <br />:&nbsp;(RC time constant)*(velocity/radius)=-1/[(distance/radius)*power factor] <br />:&nbsp;(RC time constant)*(velocity/radius)*(distance/radius)=-1/[power factor] </em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>==== Refer to Result #11 ====</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:'''Where: radius=distance'''<br />:&nbsp;(RC time constant)*(velocity/radius)=-1/power factor<br />:&nbsp;(RC time constant)*angular velocity=-1/power factor<br />:&nbsp;(RC time constant)*angular velocity=electrical energy/torque<br />:&nbsp;(RC time constant)*power=electrical energy</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>=== Result #14: Mechanical power / apparent power = i ===</em></strong></font></p><p><font size="1" color="#0000ff"><strong><em>:&nbsp;(RC time constant)*(power/voltage)=electrical energy/voltage<br />:&nbsp;(RC time constant)*(power/voltage)=electrical energy/(charge/capacitance)<br />:&nbsp;(RC time constant)*(power/voltage)*charge=electrical energy*capacitance<br />:&nbsp;(resistance/voltage)*power*charge=electrical energy<br />:&nbsp;(resistance/voltage)*power=voltage<br />:&nbsp;(power factor/current)*power=voltage<br />:&nbsp;((-torque/electrical energy)/current)*power=voltage<br />:&nbsp;(-torque/current)*power=voltage^2*charge<br />:&nbsp;(-magnetic flux)*power=voltage^2*charge<br />:&nbsp;(-magnetic flux)*power=electrical energy*voltage<br />:&nbsp;-power=electrical energy*(voltage/magnetic flux)<br />:&nbsp;(L/R time constant)*(angular velocity)*power=electrical energy*(voltage/magnetic flux)<br />:&nbsp;(L/R time constant)*(angular velocity)*power=electrical energy*(apparent power/torque)<br />:&nbsp;power^2=electrical energy*apparent power/(L/R time constant)<br />:&nbsp;power^2=electrical energy*apparent power/(-electrical energy/apparent power)<br />:&nbsp;power^2=-apparent power^2</em></strong></font></p> <div class="Discussion_UserSignature"> </div>
 
C

coeptus

Guest
<p>I believe this is the longest post of this 'special variety' to have not used the word 'tetrahedral'.</p><p>&nbsp;</p><p>&nbsp;</p><p>&nbsp;</p><p>&nbsp;</p> <div class="Discussion_UserSignature"> <p><font color="#ff00ff">If not for bad Pluck, I'd have no Pluck at all . . .</font></p><p> </p><p><font color="#0000ff">This is your vogon, posting under coeptus, and trying IE and Firefox  to see if either is faster with fewer misloads.  Erf !!</font></p><p> </p><p> </p><p> </p> </div>
 
E

emperor_of_localgroup

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>http://academia.wikia.com/wiki/Mechanical_Electric_TheoryPosted by sinkarma86</DIV></p><p>I<font size="2"> hope this is not one of those post where the poster disappear forever after the first post when we need more clarifications.</font></p><p><font size="2">Would you please separate&nbsp; &nbsp;'your'&nbsp;own NEW &nbsp;theory (or&nbsp;equations) &nbsp;from the&nbsp; already established formula&nbsp;&nbsp;and we use everyday?&nbsp; To many formulae are copied from standard electro-mechanical books. </font></p><p>&nbsp;</p> <div class="Discussion_UserSignature"> <font size="2" color="#ff0000"><strong>Earth is Boring</strong></font> </div>
 
D

DrRocket

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>I hope this is not one of those post where the poster disappear forever after the first post when we need more clarifications.Would you please separate&nbsp; &nbsp;'your'&nbsp;own NEW &nbsp;theory (or&nbsp;equations) &nbsp;from the&nbsp; already established formula&nbsp;&nbsp;and we use everyday?&nbsp; To many formulae are copied from standard electro-mechanical books. &nbsp; <br />Posted by emperor_of_localgroup</DIV></p><p>That post and the Wiki reference make no sense whatever.&nbsp; It seems to be a mixture of a few standard relations, much that is gibberish or taken&nbsp;completely out of context&nbsp;and an equal amount that is patently false.&nbsp; "Clarification" of that mess would take about 4 semesters of electrical engineering. </p> <div class="Discussion_UserSignature"> </div>
 
M

MeteorWayne

Guest
Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>That post and the Wiki reference make no sense whatever.&nbsp; It seems to be a mixture of a few standard relations, much that is gibberish or taken&nbsp;completely out of context&nbsp;and an equal amount that is patently false.&nbsp; "Clarification" of that mess would take about 4 semesters of electrical engineering. <br />Posted by DrRocket</DIV><br /><br />Considering the Raelian avatar, it's raelly ( />> ) not surprising that it's gibberish... <div class="Discussion_UserSignature"> <p><font color="#000080"><em><font color="#000000">But the Krell forgot one thing John. Monsters. Monsters from the Id.</font></em> </font></p><p><font color="#000080">I really, really, really, really miss the "first unread post" function</font><font color="#000080"> </font></p> </div>
 
M

Mee_n_Mac

Guest
At least this time Kmar isn't telling us how to properly tax the worlds population. <div class="Discussion_UserSignature"> <p>-----------------------------------------------------</p><p><font color="#ff0000">Ask not what your Forum Software can do do on you,</font></p><p><font color="#ff0000">Ask it to, please for the love of all that's Holy, <strong>STOP</strong> !</font></p> </div>
 
D

derekmcd

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>I hope this is not one of those post where the poster disappear forever after the first post when we need more clarifications.Would you please separate&nbsp; &nbsp;'your'&nbsp;own NEW &nbsp;theory (or&nbsp;equations) &nbsp;from the&nbsp; already established formula&nbsp;&nbsp;and we use everyday?&nbsp; To many formulae are copied from standard electro-mechanical books. &nbsp; <br /> Posted by emperor_of_localgroup</DIV></p><p>Kmarinas has actually been around SDC for a long time.&nbsp; Although, I'm a little mystified by this post... normally, he's a bit more coherent.&nbsp;</p> <div class="Discussion_UserSignature"> <div> </div><br /><div><span style="color:#0000ff" class="Apple-style-span">"If something's hard to do, then it's not worth doing." - Homer Simpson</span></div> </div>
 
Status
Not open for further replies.

Latest posts