Tracking down other data on Fomalhaut b , there is one observation that is not even addressed in many of the articles read so far.
From the discovery team*:
"In order for Fomalhaut b to be detectable at optical wavelengths, it must have an emitting area much larger than the physical size of a planet. "The data suggests that what is observed is a "circumplanetary ring system large enough to scatter enough starlight to make Fomalhaut b visible only if it has a radius between 20 and 40 times that of Jupiter's radius." This must be based on sound observation calculations, and these people should be on the ball with this. All of the below rides on this being largely correct.
If we are indeed seeing the light of a circumplanetary ring system, its brightness could change dramatically depending on the reflecting area of debris presented to our line of sight. If we were looking at the broad ring of it face on, or nearly so, it perhaps has now moved into an edge-on view from our perspective, dramatically decreasing light detected on earth. This seems the most likely explanation for the dimming observations. It certainly makes a lot of sense if the above quote is accurate.
In the original article, Kalas et.al claimed to see variation in the light output, suggesting a rotating ring. While re-evaluation of the same data by various groups did not find "convincing" evidence for this variation, it cannot be ruled out simply by the lack of absolute evidence from such minimal telescopic observations. Such variations may in fact be very difficult to currently detect at 25 ly. Additional higher resolution images cannot be taken currently as it has "disappeared". It is a sure bet that over the coming years, there will be some who are expecting Fomalhaut b to pull a Lazarus on us! I happen to be one of them.
It will be interesting to see in the future if any of the other exoplanets "disappear". As it seems that "ring plane rotation" is a more likely explanation than a very rare impact event, we should see a few other exoplanets "disappear" as they are periodically monitored. To see even one disappear would decrease the odds of a collision event even more for observations over the next 10-20 years or so. With over 4,000 exoplanets (if I remember this from rod correctly), that should be enough. I will bet again they will see some winking out, because the only reason they are being imaged is because many probably have a large circumplanetary ring system, and the planet is largely not the point source being seen. One would think that a large ring system with bright ices in a plane would be much more reflective than any gas or solid planet, however large it might be. Another reason to look for disappearing acts in the exoplanet story. Hopefully there is a lot of monitoring of known exoplanets to bear out these notions.
Finally (hopefully), some observations indicate that the size of the source is/was increasing. If this is a ring-plane rotation making the "planet" disappear, one must then consider aspects of brightness of the ring plane as it rotates from our point of view. One would expect a "face-on" view of the rings to provide the greatest brightness, and likely the inner portions of the ring has the highest density of debris. As you work out to the edge of the rings, you encounter decreasing debris density, and therefore decreasing brightness. But consider on rotation, where those outer "dilute" rings are now collectively reflecting much greater light at us as they all begin to emit from a more localized area. Such an effect should increase up to certain point of rotation, before the whole ring plane's brightness thereafter drops to undetectable levels at edge-on. So from this, at some point one would expect the outer-most ring(s) to also light up, giving the appearance of an increase in size, which some have apparently observed. Brightness, and to some extent the object's apparent size, is all in the angle of the ring plane to our line of sight.
So, it is likely they were never imaging just the point source of a planet (much less a debris cloud!), but the entire planet/circumplanetary ring system. That puts a whole new light, rotation, and spin on things, so to say.
Fomalhaut b's discovery team is this reference:
* Kalas, Paul; et al. (2008-11-13). "Optical Images of an Exosolar Planet 25 Light-Years from Earth". Science. 322 (5906): 1345–8.
@
https://science.sciencemag.org/cont...09&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT