NIF and the DSG4

Status
Not open for further replies.
D

dryson

Guest
In nuclear physics and nuclear chemistry, nuclear fusion is the process by which multiple like-charged atomic nuclei join together to form a heavier nucleus. It is accompanied by the release or absorption of energy, which allows matter to enter a plasma state.

The fusion of two nuclei with lower mass than iron (which, along with nickel, has the largest binding energy per nucleon) generally releases energy while the fusion of nuclei heavier than iron absorbs energy; vice-versa for the reverse process, nuclear fission. In the simplest case of hydrogen fusion, two protons have to be brought close enough for their mutual electric repulsion to be overcome by the nuclear force and the subsequent release of energy.

Nuclear fusion occurs naturally in stars. Artificial fusion in human enterprises has also been achieved, although has not yet been completely controlled. Building upon the nuclear transmutation experiments of Ernest Rutherford done a few years earlier, fusion of light nuclei (hydrogen isotopes) was first observed by Mark Oliphant in 1932; the steps of the main cycle of nuclear fusion in stars were subsequently worked out by Hans Bethe throughout the remainder of that decade. Research into fusion for military purposes began in the early 1940s as part of the Manhattan Project, but was not successful until 1952. Research into controlled fusion for civilian purposes began in the 1950s, and continues to this day.

For other uses, see Plasma.

Plasma lamp, illustrating some of the more complex phenomena of a plasma, including filamentation. The colours are a result of relaxation of electrons in excited states to lower energy states after they have recombined with ions. These processes emit light in a spectrum characteristic of the gas being excited.In physics and chemistry, plasma is a partially ionized gas, in which a certain proportion of electrons are free rather than being bound to an atom or molecule. The ability of the positive and negative charges to move somewhat independently makes the plasma electrically conductive so that it responds strongly to electromagnetic fields. Plasma therefore has properties quite unlike those of solids, liquids or gases and is considered to be a distinct state of matter. Plasma typically takes the form of neutral gas-like clouds, as seen, for example, in the case of stars. Like gas, plasma does not have a definite shape or a definite volume unless enclosed in a container; unlike gas, in the influence of a magnetic field, it may form structures such as filaments, beams and double layers (see section 3, below).

Plasma was first identified in a Crookes tube, and so described by Sir William Crookes in 1879 (he called it "radiant matter").[1] The nature of the Crookes tube "cathode ray" matter was subsequently identified by British physicist Sir J.J. Thomson in 1897,[2] and dubbed "plasma" by Irving Langmuir in 1928,[3] perhaps because it reminded him of a blood plasma.[4] Langmuir wrote:

Except near the electrodes, where there are sheaths containing very few electrons, the ionized gas contains ions and electrons in about equal numbers so that the resultant space charge is very small. We shall use the name plasma to describe this region containing balanced charges of ions and electrons.[3]

This is based on the NIF facility and combining it with the ION engine. Now if we take the process above and add the Dual-Stage 4-Grid (DS4G) onto the NIF sphere we would have the energy necessary.

Theoretically it would work. The fusion reaction occurs, an absorption coupler would absorb the energy, which would then allow the matter to enter a plasma state. The plasma would then be injected into the DSG4 where the plasma would be electrostaticly accelerated to provide a thrust thus causing the ship to move in a forward direction.

Anyone know the physics behind how changing a fusion reaction into plasma works as well as being able to absorb the plamsa and then use it in the DSG4?
 
Status
Not open for further replies.

Latest posts