There are 894 solar systems documented now at this site,
https://exoplanet.eu/catalog/, and 947 documented here,
https://exoplanetarchive.ipac.caltech.edu/index.html
None of these solar systems look like ours here. HD 11067 system is also found in my queries, TRAPPIST-1 too, and others like KOI-351 with 8 planets., also Kepler-90. Others have 2 or more exoplanets confirmed now. I would think astrobiology needs to show some of these extra-solar systems, indeed have an earthlike exoplanet with life on it, whether microorganisms or planets and trees. K2-18 system shows up and there are a number of reports attempting to show life on this possible hycean world. Others keep popping up indicating a magma world is likely here and not phytoplankton swimming around in a habitable ocean world.
JWST data suggest exoplanet K2-18b may have molten surface rather than a watery ocean,
https://phys.org/news/2024-02-jwst-exoplanet-k2-18b-molten.html
Ref - Distinguishing Oceans of Water from Magma on Mini-Neptune K2-18b,
https://iopscience.iop.org/article/10.3847/2041-8213/ad206e, 02-Feb-2024. "Abstract Mildly irradiated mini-Neptunes have densities potentially consistent with them hosting substantial liquid-water oceans ("Hycean" planets). The presence of CO2 and simultaneous absence of ammonia (NH3) in their atmospheres has been proposed as a fingerprint of such worlds. JWST observations of K2-18b, the archetypal Hycean, have found the presence of CO2 and the depletion of NH3 to <100 ppm; hence, it has been inferred that this planet may host liquid-water oceans. In contrast, climate modeling suggests that many of these mini-Neptunes, including K2-18b, may likely be too hot to host liquid water. We propose a solution to this discrepancy between observation and climate modeling by investigating the effect of a magma ocean on the atmospheric chemistry of mini-Neptunes. We demonstrate that atmospheric NH3 depletion is a natural consequence of the high solubility of nitrogen species in magma at reducing conditions; precisely the conditions prevailing where a thick hydrogen envelope is in communication with a molten planetary surface. The magma ocean model reproduces the present JWST spectrum of K2-18b to ≲3σ, suggesting this is as credible an explanation for current observations as the planet hosting a liquid-water ocean."
Still looking for ET phoning home