C
captdude
Guest
The links below are followed by short segments of his article. The article is fairly lengthy so the first link takes you to the beginning and the second link gets to the main point. I thought it was quite interesting and wanted to share it with the community.
Beginning of Article: http://discovermagazine.com/2005/jun/co ... :int=0&-C=
Heart of the article: http://discovermagazine.com/2005/jun/co ... :int=2&-C=
There are four fundamental forces in the universe: electromagnetism; the strong force, which binds atomic nuclei together; the weak force, which is responsible for radioactive decay; and gravity. Gravity is the only one of the forces that physicists have been unable to explain in quantum terms. To Penrose, the failures are a clue that physicists are on the wrong path. Most believe that quantum theory is fundamentally sound but that our understanding of gravity must change. Penrose says that rather than seeking to change Einstein’s theory of gravity, we should study how gravity affects an object small enough to exist in the borderland between the quantum world of atoms and the human world of visible objects.
Penrose is convinced that conventional quantum theory seems absurd because it is incomplete. Specifically, it ignores the effects of gravity. On atomic or subatomic scales, gravity is so weak compared with the other forces that most physicists see no problem with leaving it out of the picture. But in Penrose’s view, the only way to understand the quantum world is to consider all the forces that act on it. To do that, he is combining Einstein’s relativity with quantum physics in a way nobody has considered before.
In Einstein’s theory, any object that has mass causes a warp in the structure of space and time around it. This warping produces the effect we experience as gravity. Penrose points out that tiny objects—dust specks, atoms, electrons—produce space-time warps as well. Ignoring these warps is where most physicists go awry, he believes.
If a dust speck is in two locations at the same time, each one should create its own distortions in space-time, yielding two superposed gravitational fields. According to Penrose’s theory, it takes energy to sustain these dual fields. The stability of a system depends on the amount of energy involved: The higher the energy required to sustain a system, the less stable it is. Over time, an unstable system tends to settle back to its simplest, lowest-energy state—in this case, one object in one location producing one gravitational field. If Penrose is right, gravity yanks objects back into a single location, without any need to invoke observers or parallel universes.
How long the process takes depends on the degree of instability. Electrons, atoms, and molecules are so small that their gravity, and hence the amount of energy needed to keep them in duplicate states, is negligible. According to Penrose, they can persist that way essentially forever, as standard quantum theory predicts. Large objects, on the other hand, create such significant gravitational fields that the duplicate states vanish almost at once. Penrose calculates that a person collapses to one location in a trillion-trillionth of a second. For a dust speck, the process takes nearly a second—long enough that it might be possible to measure.
To read about his proposal to measure this effect click on one of the links above
Beginning of Article: http://discovermagazine.com/2005/jun/co ... :int=0&-C=
Heart of the article: http://discovermagazine.com/2005/jun/co ... :int=2&-C=
There are four fundamental forces in the universe: electromagnetism; the strong force, which binds atomic nuclei together; the weak force, which is responsible for radioactive decay; and gravity. Gravity is the only one of the forces that physicists have been unable to explain in quantum terms. To Penrose, the failures are a clue that physicists are on the wrong path. Most believe that quantum theory is fundamentally sound but that our understanding of gravity must change. Penrose says that rather than seeking to change Einstein’s theory of gravity, we should study how gravity affects an object small enough to exist in the borderland between the quantum world of atoms and the human world of visible objects.
Penrose is convinced that conventional quantum theory seems absurd because it is incomplete. Specifically, it ignores the effects of gravity. On atomic or subatomic scales, gravity is so weak compared with the other forces that most physicists see no problem with leaving it out of the picture. But in Penrose’s view, the only way to understand the quantum world is to consider all the forces that act on it. To do that, he is combining Einstein’s relativity with quantum physics in a way nobody has considered before.
In Einstein’s theory, any object that has mass causes a warp in the structure of space and time around it. This warping produces the effect we experience as gravity. Penrose points out that tiny objects—dust specks, atoms, electrons—produce space-time warps as well. Ignoring these warps is where most physicists go awry, he believes.
If a dust speck is in two locations at the same time, each one should create its own distortions in space-time, yielding two superposed gravitational fields. According to Penrose’s theory, it takes energy to sustain these dual fields. The stability of a system depends on the amount of energy involved: The higher the energy required to sustain a system, the less stable it is. Over time, an unstable system tends to settle back to its simplest, lowest-energy state—in this case, one object in one location producing one gravitational field. If Penrose is right, gravity yanks objects back into a single location, without any need to invoke observers or parallel universes.
How long the process takes depends on the degree of instability. Electrons, atoms, and molecules are so small that their gravity, and hence the amount of energy needed to keep them in duplicate states, is negligible. According to Penrose, they can persist that way essentially forever, as standard quantum theory predicts. Large objects, on the other hand, create such significant gravitational fields that the duplicate states vanish almost at once. Penrose calculates that a person collapses to one location in a trillion-trillionth of a second. For a dust speck, the process takes nearly a second—long enough that it might be possible to measure.
To read about his proposal to measure this effect click on one of the links above