Using GMRT data, Arnab Chakraborty, postdoctoral researcher at the Department of Physics and Trottier Space Institute of McGill University, and Nirupam Roy, Associate Professor, Department of Physics, IISc have detected a
radio signal from atomic hydrogen in a distant galaxy at redshift z=1.29.
"Due to the immense distance to the galaxy, the 21 cm emission line had redshifted to 48 cm by the time the signal traveled from the source to the telescope," says Chakraborty. The signal detected by the team was emitted from this galaxy when the universe was only 4.9 billion years old; in other words, the look-back time for this source is 8.8 billion years.
This detection was made possible by a phenomenon called
gravitational lensing, in which the light emitted by the source is bent due to the presence of another massive body, such as an early type
elliptical galaxy, between the target galaxy and the observer, effectively resulting in the "magnification" of the signal. "In this specific case, the magnification of the signal was about a factor of 30, allowing us to see through the high redshift universe," explains Roy.