Question AXION GLUON MATTER AS DARK MATTER

Page 4 - Seeking answers about space? Join the Space community: the premier source of space exploration, innovation, and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier.
Hello Jzz
I try to avoid Dark Matter Dark Energy.
My approach is from compact matter, being condensates.

Transients of Condensates. From Atomic to Neutron matter to quark matter to Axion matter and so on.

Compact core having a common property, Dipolar Electro-Magnetic vector field, created by Chiral Super-Symmetry.
This vector field (Vortex) expels matter away from the core.

Cores such as our Sun, Condensates (BH) center of the Milkyway, Core of M87.

Jzz, its past my bedtime and my brain is half here.
 

Jzz

May 10, 2021
189
61
4,660
Visit site
Transients of Condensates. From Atomic to Neutron matter to quark matter to Axion matter and so on.

Compact core having a common property, Dipolar Electro-Magnetic vector field, created by Chiral Super-Symmetry.
This vector field (Vortex) expels matter away from the core.

Cores such as our Sun, Condensates (BH) center of the Milkyway, Core of M87.

Jzz, its past my bedtime and my brain is half here.
No problem , take it easy have a good rest and wake up refreshed. The aether based theory suggested by myself, offers the kind of connectedness that is lacking in quantum mechanics. Beginning with a better explanation for why the electron does not spiral into the nucleus, which in turn automatically negates the use of Schrodinger's equation and wave-functions, the theory offers a complete explanation of nature, which is what physics is supposed to do. I suggest once more, that you go through the link to my paper on "Redefining Electrons: A Modern Theory of the Aether" that I had posted and then, if you have any questions or objections to raise those objections and questions. Which would be a more ordered way to proceed.
 
If Axion matter played an important role in the early stages, why can't it play a role now.

[Submitted on 23 Aug 2023]

QCD Axion Hybrid Inflation​

Yuma Narita, Fuminobu Takahashi, Wen Yin
When the inflaton is coupled to the gluon Chern-Simons term for successful reheating, mixing between the inflaton and the QCD axion is generally expected given the solution of the strong CP problem by the QCD axion. This is particularly natural if the inflaton is a different, heavier axion. We propose a scenario in which the QCD axion plays the role of the inflaton by mixing with heavy axions. In particular, if the energy scale of inflation is lower than the QCD scale, a hybrid inflation is realized where the QCD axion plays the role of the inflaton in early stages. We perform detailed numerical calculations to take account of the mixing effects. Interestingly, the initial misalignment angle of the QCD axion, which is usually a free parameter, is determined by the inflaton dynamics. It is found to be close to π in simple models. This is the realization of the pi-shift inflation proposed in previous literature, and it shows that QCD axion dark matter and inflation can be closely related. The heavy axion may be probed by future accelerator experiments.
 
Axion matter the search continues.
Are we getting close and yet so far.
The question is this.
Can Axion Core matter form be creating an ultimate compact condensate?

[Submitted on 19 Apr 2024]

Axion-induced Casimir force between nuclei and dynamical axion pair creation​

Stefan Evans, Ralf Schützhold
We study the interaction between axions and nuclei by combining the Peccei-Quinn mechanism with results from quantum chromo-dynamics (QCD) which imply that the QCD condensates are reduced within nuclear matter. Thus, the effective axion mass is also reduced, yielding a finite axion-nucleon scattering cross section. Even in the absence of real axions, this interaction would manifest itself in a Casimir type attraction between two nuclei. Finally, accelerated nuclei can create entangled pairs of axions via the dynamical Casimir effect (or as signatures of the Unruh effect).
 
Why are they searching Axion matter?

[Submitted on 21 Apr 2024]

Chern-Simmons electrodynamics and torsion dark matter axions​

Zhifu Gao (1), Luiz C. Garcia de Andrade (2) ((1) Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang, China, (2) Cosmology and Gravitation group. Departamento deFísica Teórica - IF - UERJ, Rio de Janeiro, RJ, Brazil and Institute for Cosmology and Philosophy of Nature, Trg, Florjana, Croatia)
In this paper, we delve into the influence of torsion axial pseudo vector on dark photons in an axion torsionic background, as investigated previously by Duncan et al[ Nucl Phys B 387:215 (1992)]. Notably, axial torsion, owing to its significantly greater mass compared to axions, gives rise to magnetic helicity in torsionful Chern-Simons (CS) electrodynamics, leading to the damping of magnetic fields. In QCD scale the damping from dark massive photons leads us to obtain a magnetic field of 10−8 Gauss, which is approximated the order of magnitude of magnetic fields at present universe. This result is obtained by considering that torsion has the value of the 1 MeV at the early universe, and can be improved to the higher value of 10−3 Gauss when the axial torsion 0-component is given by 108 MeV and the mass of dark photon is approximated equal to the axion. The axion plays a crucial role in achieving CS dynamo action arising from axions. This study is useful in deepening our understanding of fundamental physics, from nuclear interactions to the nature of dark matter.