T
tampaDreamer
Guest
http://www.wired.com/politics/security/magazine/17-08/mf_haarp?currentPage=3
Todd Pedersen had to hustle—the sky was scheduled to start glowing soon, and he didn't want to miss it. It was just before sunset, a cold February evening in deep-woods Alaska, and the broad-shouldered US Air Force physicist was scrambling across the snow in his orange down parka and fur-lined bomber hat. Grabbing cables and electronics, he rushed to assemble a jury-rigged telescope atop a crude wooden platform.
The rig wasn't much, just a pair of high-sensitivity cameras packed into a dorm-room refrigerator and pointed at a curved mirror reflecting a panoramic view of the sky. Pedersen had hoped to monitor the camera feed from a relatively warm bunkhouse nearby. But powdery snow two feet deep made it difficult to string cables back to the building.
As darkness closed in, Pedersen tried to get the second imager working—with no luck—and the first one began snapping pictures. A few minutes before seven, throbbing arcs of green and red light began to form on his monitor, eventually coalescing into an egg shape. Other shards of light shimmered, gathered into a jagged ring, and spun around the oval center. "This is really good stuff," Pedersen cooed. This wasn't just another aurora borealis triggered by solar winds; this one Pedersen made himself. He did it with the High Frequency Active Auroral Research Program (Haarp): a $250 million facility with a 30-acre array of antennas capable of spewing 3.6 megawatts of energy into the mysterious plasma of the ionosphere.
Bringing Haarp to fruition was, well, complicated. A group of scientists had to cozy up to a US senator, cut deals with an oil company, and convince the Pentagon that the project might revolutionize war. Oh, and along the way they sparked enough conspiracy theories to make the place sound like an arctic Area 51.
But the shocking thing about Haarp isn't that it's a boondoggle (it's actually pretty worthwhile) or that it was spawned by a military-industrial-petrochemical-political complex (a hallowed government tradition). It's that, all too often, this is the way big science gets done in the US. Navigating the corridors of money and power is simply what scientists have to do.
...
Haarp's Mission
The heart of the High Frequency Active Auroral Research Program is an ionospheric heater that shoots electromagnetic energy into Earth's atmosphere. Five generators pump out 2.9 megawatts each; 180 antennas convert the electricity into high-frequency radio waves and send them into the ionosphere, which turns them into low-frequency waves. Why? Research. An energized ionosphere could be used for all sorts of cool stuff.
Communication
Haarp can bounce signals off the ionosphere with wavelengths long enough to penetrate deep into the ocean and communicate with submarines.
Protection
Researchers are testing whether ionospheric waves could nudge H-bomb-generated electrons out of the magnetosphere, shielding orbiting satellites.
Atmospheric Research
At about 125 miles up, Haarp's waves can energize free electrons, which collide with neutral atoms to produce a glow like the aurora borealis.
Surveillance
How low-frequency waves are absorbed and reflected by the earth can reveal what's underneath—including hidden bunkers.
Todd Pedersen had to hustle—the sky was scheduled to start glowing soon, and he didn't want to miss it. It was just before sunset, a cold February evening in deep-woods Alaska, and the broad-shouldered US Air Force physicist was scrambling across the snow in his orange down parka and fur-lined bomber hat. Grabbing cables and electronics, he rushed to assemble a jury-rigged telescope atop a crude wooden platform.
The rig wasn't much, just a pair of high-sensitivity cameras packed into a dorm-room refrigerator and pointed at a curved mirror reflecting a panoramic view of the sky. Pedersen had hoped to monitor the camera feed from a relatively warm bunkhouse nearby. But powdery snow two feet deep made it difficult to string cables back to the building.
As darkness closed in, Pedersen tried to get the second imager working—with no luck—and the first one began snapping pictures. A few minutes before seven, throbbing arcs of green and red light began to form on his monitor, eventually coalescing into an egg shape. Other shards of light shimmered, gathered into a jagged ring, and spun around the oval center. "This is really good stuff," Pedersen cooed. This wasn't just another aurora borealis triggered by solar winds; this one Pedersen made himself. He did it with the High Frequency Active Auroral Research Program (Haarp): a $250 million facility with a 30-acre array of antennas capable of spewing 3.6 megawatts of energy into the mysterious plasma of the ionosphere.
Bringing Haarp to fruition was, well, complicated. A group of scientists had to cozy up to a US senator, cut deals with an oil company, and convince the Pentagon that the project might revolutionize war. Oh, and along the way they sparked enough conspiracy theories to make the place sound like an arctic Area 51.
But the shocking thing about Haarp isn't that it's a boondoggle (it's actually pretty worthwhile) or that it was spawned by a military-industrial-petrochemical-political complex (a hallowed government tradition). It's that, all too often, this is the way big science gets done in the US. Navigating the corridors of money and power is simply what scientists have to do.
...
Haarp's Mission
The heart of the High Frequency Active Auroral Research Program is an ionospheric heater that shoots electromagnetic energy into Earth's atmosphere. Five generators pump out 2.9 megawatts each; 180 antennas convert the electricity into high-frequency radio waves and send them into the ionosphere, which turns them into low-frequency waves. Why? Research. An energized ionosphere could be used for all sorts of cool stuff.
Communication
Haarp can bounce signals off the ionosphere with wavelengths long enough to penetrate deep into the ocean and communicate with submarines.
Protection
Researchers are testing whether ionospheric waves could nudge H-bomb-generated electrons out of the magnetosphere, shielding orbiting satellites.
Atmospheric Research
At about 125 miles up, Haarp's waves can energize free electrons, which collide with neutral atoms to produce a glow like the aurora borealis.
Surveillance
How low-frequency waves are absorbed and reflected by the earth can reveal what's underneath—including hidden bunkers.