S
spacester
Guest
See, once again I leave something unexplained and sure enough, you ask about it. That's great feedback for me, this way I <i>know</i> you're really looking hard at this stuff. Very cool.<br /><br />Mass fraction is the simplest parameter for the mass allocation of a rocketship. It's the fraction you most often see in the various versions of the Rocket Equation.<br /><br />It's one of those "Mf" variables that leads to so much confusion. In an effort to be consistent, I'll try to remember to always spell it out. IOW I'll try to never again write<br /><br />mf = e ^ (dV/Ve) [CONFUSING]<br /><br />and instead will write<br /><br />mass fraction = e ^ (dV/Ve) [LESS CONFUSING]<br /><br />and here is why:<br /><br />mass fraction = (original spaceship mass) divided by (final spaceship mass)<br /><br />IOW<br /><br />mass fraction = mo / mf<br /><br />So from now on 'mf' will always be 'final spaceship mass'<br /><br />[And mass flow rate will be 'm-dot']<br /><br />Mass fraction is also known as mass ratio . . .<br /><br />Note that 'original' and 'final' mean the mass of the entire vehicle just before and just after the firing of the rocket motors. When you get into staging, the final mass of one stage becomes the original mass for the next stage.<br /><br />EDIT:<br />Um, maybe I didn't answer "What is it used for?"<br />It's used to figure out how much fuel, payload and inert mass you will have based on the deltaV and the Isp. It's kinda hard to work with, which is why I use those equations with Wi, Wp, and WL. In fact, if you try to work a problem without those "W equations", you'll prolly realize what I was getting at with the 1/(1-pf) question. <div class="Discussion_UserSignature"> </div>