N
nimbus
Guest
I'd stick this in EarthlingX's SB&T from around the world updates compendium, but it's not an update (old in fact).
http://www.dunnspace.com/leo_on_the_cheap.htm
200-some pages.
The contents at a glance:
1 THE PROBLEM.. . . . . . . . . . . . . . . . . . . . . . . . . . 1
Expensive Transportation with Broad Impacts . . . . . . . . . 1
- Current Launch Vehicle Cost Range . . . . . . . . . . . . . . 1
- Unique Transportation Requirements . . . . . . . . . . . . . 2
Establishing the Cost per Launch of Expendables . . . . . . . 2
Establishing the Cost per Launch of the Shuttle . . . . . . . . 2
Representative Vehicle Costs . . . . . . . . . . . . . . . . . . . 4
- Pegasus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Delta II 7920 . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Atlas IIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Titan IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Space Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Launch Vehicle Cost Fraction . . . . . . . . . . . . . . . . . . 5
- DSP Launch Cost Fraction . . . . . . . . . . . . . . . . . . . 5
- GPS Launch Cost Fraction . . . . . . . . . . . . . . . . . . . 6
Vehicle Performance Values . . . . . . . . . . . . . . . . . . . 6
Payload Launch Efficiency Values . . . . . . . . . . . . . . . . 7
- Expected Efficiency Trends . . . . . . . . . . . . . . . . . . . 8
- Vehicle Development Cost and Scaling Effects . . . . . . . . 8
Limited Launch Capacity . . . . . . . . . . . . . . . . . . . . . 9
Cost Goals and Cost Realities . . . . . . . . . . . . . . . . . . . 10
Commercial Launch Industry Considerations . . . . . . . . . . 11
- Foreign Competition . . . . . . . . . . . . . . . . . . . . . . 11
- Possible US Responses . . . . . . . . . . . . . . . . . . . . . 13
- Commerical Transportation Cost Comparisons . . . . . . . . .
Impacts of High Launch Costs . . . . . . . . . . . . . . . . . . .
- National Space Policy Impacts . . . . . . . . . . . . . . . . . .
- New Initiatives . . . . . . . . . . . . . . . . . . . . . . . . . .
- Launch Failure . . . . . . . . . . . . . . . . . . . . . . . . . .
The Means for Expanded Space Activities . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 EXISTING LAUNCH SYSTEMS . . . . . . . . . . . . . . . . . . .
The Space Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . .
Titan Launch Vehicles . . . . . . . . . . . . . . . . . . . . . . .
Atlas Launch Vehicles . . . . . . . . . . . . . . . . . . . . . . . .
Delta Launch Vehicles . . . . . . . . . . . . . . . . . . . . . . .
Pegasus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 PROPOSED LAUNCH SYSTEMS . . . . . . . . . . . . . . . . . .
National Launch System . . . . . . . . . . . . . . . . . . . . . .
Spacelifter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single-Stage Rocket Technology . . . . . . . . . . . . . . . . . .
National Aerospace Plane . . . . . . . . . . . . . . . . . . . . . .
SEALAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Taurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Proposed Commercial Systems . . . . . . . . . . . . . . . . . . .
- EER Systems Conestoga . . . . . . . . . . . . . . . . . . . . .
- AMROC Aquila . . . . . . . . . . . . . . . . . . . . . . . . . .
- E’ Prime Eagle . . . . . . . . . . . . . . . . . . . . . . . . . .
- Lockheed Launch Vehicle . . . . . . . . . . . . . . . . . . . .
- Sea Launch Services Surf . . . . . . . . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 CAUSES OF HIGH LAUNCH COSTS . . . . . . . . . . . . . . . .
The ICBM Heritage . . . . . . . . . . . . . . . . . . . . . . . . .
The Manned Space Program Heritage . . . . . . . . . . . . . . .
Reasons for the Shuttle’s High Cost . . . . . . . . . . . . . . . .
- Making the Shuttle a Manned Vehicle . . . . . . . . . . . . .
- The Cost of Shuttle Recoverability/Reusability . . . . . . . . .
- Weight Penalties of the Shuttle’s Design . . . . . . . . . . . .
- Space Shuttle Payload Fraction . . . . . . . . . . . . . . . . .
- High Complexity Equals High Cost . . . . . . . . . . . . . .
The Design Establishes the Cost . . . . . . . . . . . . . . . . . . 4 8
- Launch Vehicle Hardware Cost per Kilogram . . . . . . . . . 4 9
- Production Influences . . . . . . . . . . . . . . . . . . . . . . . 5 0
- The High Cost of Maximum Performance and Minimum Weight . . . . . . . . . . . . . . . . . . . . . 5 1
- The High Development Cost Roadblock . . . . . . . . . . . . . 5 1
- A Zero Tolerance for Failure . . . . . . . . . . . . . . . . . . . 5 3
- Launch Vehicle Remote Monitoring . . . . . . . . . . . . . . . 5 5
- Range Safety Requirements . . . . . . . . . . . . . . . . . . . 5 6
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1
5 THE NECESSITY FOR COMPLEXI’IY MYTH . . . . . . . . . . . 63
Launch Vehicle Complexity: Myths and Realities . . . . . . . . . 6 3
- Rocket Engines and Aircraft Engines . . . . . . . . . . . . . . 6 4
The Example of Russian Launch Vehicles . . . . . . . . . . . . . 6 6
- Simple and Rugged Russian Booster Designs . . . . . . . . . . 6 7
- An Example of Simplicity-The Russian
-- RD-107 Rocket Engine . . . . . . . . . . . . . . . . . . . . . 6 7
- Russian Launch Operations-Simple and Fast . . . . . . . . . 6 9
- The Russian Launch Program-Simple,
-- Modular, and Robust . . . . . . . . . . . . . . . . . . . . . . 7 0
The Lessons of the German V-2 Missile Program . . . . . . . . . 7 0
- The Early German Rocket Program . . . . . . . . . . . . . . . 7 0
- Wartime Production of the V-2 . . . . . . . . . . . . . . . . . . 7 4
- Analyzing the V-2 in Today’s Context . . . . . . . . . . . . . . 7 4
The Private Experimental Rocketeers . . . . . . . . . . . . . . . 7 7
- The California Societies . . . . . . . . . . . . . . . . . . . . . 7 7
- Examples of Successful Designs . . . . . . . . . . . . . . . . . 7 8
- The Lesson of the Backyard Rockets . . . . . . . . . . . . . . . 8 3
Other Examples of Simple Rocket Engines . . . . . . . . . . . . 8 5
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9
6 SOME KEY DESIGN CHOICES . . . . . . . . . . . . . . . . . . . 9 3
Manned versus Unmanned . . . . . . . . . . . . . . . . . . . . . 9 3
- The Future of the Space Shuttle . . . . . . . . . . . . . . . . . 9 3
- The Advisability of Mixing People and Payloads . . . . . . . . 9 6
Expendable versus Reusable . . . . . . . . . . . . . . . . . . . . 9 6
- The Space Shuttle’s Reusable Solid Rocket Boosters . . . . . . 9 7
- Single-Stage-to-Orbit . . . . . . . . . . . . . . . . . . . . . . . 9 8
- Expendable and Reusable Unmanned Staged Vehicles . . . . 100
Solids versus Liquids versus Hybrids . . . . . . . . . . . . . . . 102
- Scope of the Trade Discussion . . . . . . . . . . . . . . . . . . 102
- Specific Impulse Comparison . . . . . . . . . . . . . . . . . . 103
- Positive Attributes of Solid Propellants . . . . . . . . . . . . . 103
- Negative Attributes of Solid Propellants . . . . . . . . . . . . 104
- Environmental Impact Comparison . . . . . . . . . . . . . . . 106
- Comparison of Throttling Capability . . . . . . . . . . . . . . 108
- Other Comparisons of Various Propellant Attributes . . . . . 109
- Liquids Hold the Best Potential to Reduce Cost . . . . . . . . 111
Pump-Fed versus Pressure-Fed . . . . . . . . . . . . . . . . . . 111
- Engine Power Cycles . . . . . . . . . . . . . . . . . . . . . . . 112
- The Rationale for Using Turbomachinery . . . . . . . . . . . . 112
- Pressure-Fed Booster Designs . . . . . . . . . . . . . . . . . . 112
- Pump-Fed versus Pressure-Fed Studies . . . . . . . . . . . . . 113
- The ‘Vehicle Weight Is a Cost Driver” Myth . . . . . . . . . . 113
- SSME and STME Complexities and Part Counts . . . . . . . . 119
- The Cost and Complexity of Turbomachinery . . . . . . . . . . 119
- Examples of Turbomachinery-Induced Problems . . . . . . . . 121
- Pressure-Fed Booster Pressurization Systems . . . . . . . . . 122
- Pressure-Fed Engine Combustion Stability . . . . . . . . . . . 123
- Historical Pump-Fed/Pressure-Fed Comparisons . . . . . . . . 124
- A Survey of Pressure-Fed Engines . . . . . . . . . . . . . . . . 124
- Other Simplification Possibilities . . . . . . . . . . . . . . . . 130
- Pressure-Fed Systems Offer the Possibility of Lower Costs . . . . . . . . . . . . . . . . . . . . . . . . . 131
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7 CULTURAL CHANGES . . . . . . . . . . . . . . . . . . . . . . . . 137
Recent Launch System Proposals . . . . . . . . . . . . . . . . . 137
- NLS and Spacelifter . . . . . . . . . . . . . . . . . . . . . . . 138
- SSRT and NASP . . . . . . . . . . . . . . . . . . . . . . . . . 138
Cultural Changes to Get a Space Truck . . . . . . . . . . . . . . 140
Designing for Minimum Cost . . . . . . . . . . . . . . . . . . . . 140
- The Effects of DFMC Application . . . . . . . . . . . . . . . . 141
Simplicity/Robustness Instead of Redundancy . . . . . . . . . . 143
Vehicle Instrumentation and Range Operations Changes . . . . 144
Using Commercial Manufacturing Techniques . . . . . . . . . . 147
Shedding the Fear of Failure . . . . . . . . . . . . . . . . . . . . 148
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8 BOOSTER/SPACECRAFT COST RELATIONSHIPS . . . . . . . . 151
Lowering Spacecraft Cost through
Weight/Volume Growth . . . . . . . . . . . . . . . . . . . . . . . 152
- The Lessons of Russian Spacecraft Design . . . . . . . . . . . 152
- Benefits of Spacecraft Weight Growth . . . . . . . . . . . . . . 153
- Studies on Spacecraft Weight/Volume Growth Benefits . . . . 154
Opportunities for Increased Reliability . . . . . . . . . . . . . . 155
Opportunities for Increased Design Weight Margins . . . . . . . 156
Booster/Spacecraft Interface Standardization . . . . . . . . . . . 159
Bus Standardization and Off-the-Shelf Subsystems . . . . . . . 161
Specific Benefits of Large, Inexpensive Boosters . . . . . . . . . 162
- Benefits to Spacecraft Structural Designs . . . . . . . . . . . 163
- Benefits to Spacecraft Propulsion System Design . . . . . . . 165
- Benefits to Spacecraft Power System Design . . . . . . . . . . 167
- Benefits to Spacecraft Electronics Design . . . . . . . . . . . . 168
- Benefits to Spacecraft Communications System Design . . . . 169
- Benefits to Spacecraft Thermal Control System Design . . . . 169
- Benefits to Spacecraft Design Life Specifications . . . . . . . . 170
Avoiding Misuse of Increased Launch Capacity . . . . . . . . . . 170
Other Benefits of Low-Cost Boosters and Spacecraft . . . . . . . 172
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9 MINIMUM COST DESIGN LAUNCH VEHICLES . . . . . . . . . 177
Sea-Launched Space Booster Studies . . . . . . . . . . . . . . . 178
Early Air Force and NASA-Sponsored Studies . . . . . . . . . . 180
- Initial MCD Booster Designs . . . . . . . . . . . . . . . . . . . 181
- Initial Industry Studies . . . . . . . . . . . . . . . . . . . . . 185
- The Boeing MCD Booster Study Contract . . . . . . . . . . . . 188
- TRW MCD Booster Concepts . . . . . . . . . . . . . . . . . . . . 189
- A Lost Opportunity for MCD Booster Development . . . . . . 190
More Recent Minimum Cost Design Initiatives . . . . . . . . . . 190
- The SEALAR Development Effort . . . . . . . . . . . . . . . . 192
- Another Lost Opportunity for MCD Booster Development . . . 193
Current Low-Cost Booster Development Efforts . . . . . . . . . 193
- The McDonnell Douglas Delta Replacement . . . . . . . . . . 193
- The PacAstro Smallsat Booster . . . . . . . . . . . . . . . . . 194
- The Microcosm Ultra-Low-Cost Booster . . . . . . . . . . . . . 194
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . 201
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 203
- MCD Booster Specifics . . . . . . . . . . . . . . . . . . . . . . 205
- Policy Changes and Initiatives . . . . . . . . . . . . . . . . . . 208
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
http://www.dunnspace.com/leo_on_the_cheap.htm
200-some pages.
The contents at a glance:
1 THE PROBLEM.. . . . . . . . . . . . . . . . . . . . . . . . . . 1
Expensive Transportation with Broad Impacts . . . . . . . . . 1
- Current Launch Vehicle Cost Range . . . . . . . . . . . . . . 1
- Unique Transportation Requirements . . . . . . . . . . . . . 2
Establishing the Cost per Launch of Expendables . . . . . . . 2
Establishing the Cost per Launch of the Shuttle . . . . . . . . 2
Representative Vehicle Costs . . . . . . . . . . . . . . . . . . . 4
- Pegasus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Delta II 7920 . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Atlas IIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Titan IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- Space Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Launch Vehicle Cost Fraction . . . . . . . . . . . . . . . . . . 5
- DSP Launch Cost Fraction . . . . . . . . . . . . . . . . . . . 5
- GPS Launch Cost Fraction . . . . . . . . . . . . . . . . . . . 6
Vehicle Performance Values . . . . . . . . . . . . . . . . . . . 6
Payload Launch Efficiency Values . . . . . . . . . . . . . . . . 7
- Expected Efficiency Trends . . . . . . . . . . . . . . . . . . . 8
- Vehicle Development Cost and Scaling Effects . . . . . . . . 8
Limited Launch Capacity . . . . . . . . . . . . . . . . . . . . . 9
Cost Goals and Cost Realities . . . . . . . . . . . . . . . . . . . 10
Commercial Launch Industry Considerations . . . . . . . . . . 11
- Foreign Competition . . . . . . . . . . . . . . . . . . . . . . 11
- Possible US Responses . . . . . . . . . . . . . . . . . . . . . 13
- Commerical Transportation Cost Comparisons . . . . . . . . .
Impacts of High Launch Costs . . . . . . . . . . . . . . . . . . .
- National Space Policy Impacts . . . . . . . . . . . . . . . . . .
- New Initiatives . . . . . . . . . . . . . . . . . . . . . . . . . .
- Launch Failure . . . . . . . . . . . . . . . . . . . . . . . . . .
The Means for Expanded Space Activities . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 EXISTING LAUNCH SYSTEMS . . . . . . . . . . . . . . . . . . .
The Space Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . .
Titan Launch Vehicles . . . . . . . . . . . . . . . . . . . . . . .
Atlas Launch Vehicles . . . . . . . . . . . . . . . . . . . . . . . .
Delta Launch Vehicles . . . . . . . . . . . . . . . . . . . . . . .
Pegasus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 PROPOSED LAUNCH SYSTEMS . . . . . . . . . . . . . . . . . .
National Launch System . . . . . . . . . . . . . . . . . . . . . .
Spacelifter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single-Stage Rocket Technology . . . . . . . . . . . . . . . . . .
National Aerospace Plane . . . . . . . . . . . . . . . . . . . . . .
SEALAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Taurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Proposed Commercial Systems . . . . . . . . . . . . . . . . . . .
- EER Systems Conestoga . . . . . . . . . . . . . . . . . . . . .
- AMROC Aquila . . . . . . . . . . . . . . . . . . . . . . . . . .
- E’ Prime Eagle . . . . . . . . . . . . . . . . . . . . . . . . . .
- Lockheed Launch Vehicle . . . . . . . . . . . . . . . . . . . .
- Sea Launch Services Surf . . . . . . . . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 CAUSES OF HIGH LAUNCH COSTS . . . . . . . . . . . . . . . .
The ICBM Heritage . . . . . . . . . . . . . . . . . . . . . . . . .
The Manned Space Program Heritage . . . . . . . . . . . . . . .
Reasons for the Shuttle’s High Cost . . . . . . . . . . . . . . . .
- Making the Shuttle a Manned Vehicle . . . . . . . . . . . . .
- The Cost of Shuttle Recoverability/Reusability . . . . . . . . .
- Weight Penalties of the Shuttle’s Design . . . . . . . . . . . .
- Space Shuttle Payload Fraction . . . . . . . . . . . . . . . . .
- High Complexity Equals High Cost . . . . . . . . . . . . . .
The Design Establishes the Cost . . . . . . . . . . . . . . . . . . 4 8
- Launch Vehicle Hardware Cost per Kilogram . . . . . . . . . 4 9
- Production Influences . . . . . . . . . . . . . . . . . . . . . . . 5 0
- The High Cost of Maximum Performance and Minimum Weight . . . . . . . . . . . . . . . . . . . . . 5 1
- The High Development Cost Roadblock . . . . . . . . . . . . . 5 1
- A Zero Tolerance for Failure . . . . . . . . . . . . . . . . . . . 5 3
- Launch Vehicle Remote Monitoring . . . . . . . . . . . . . . . 5 5
- Range Safety Requirements . . . . . . . . . . . . . . . . . . . 5 6
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1
5 THE NECESSITY FOR COMPLEXI’IY MYTH . . . . . . . . . . . 63
Launch Vehicle Complexity: Myths and Realities . . . . . . . . . 6 3
- Rocket Engines and Aircraft Engines . . . . . . . . . . . . . . 6 4
The Example of Russian Launch Vehicles . . . . . . . . . . . . . 6 6
- Simple and Rugged Russian Booster Designs . . . . . . . . . . 6 7
- An Example of Simplicity-The Russian
-- RD-107 Rocket Engine . . . . . . . . . . . . . . . . . . . . . 6 7
- Russian Launch Operations-Simple and Fast . . . . . . . . . 6 9
- The Russian Launch Program-Simple,
-- Modular, and Robust . . . . . . . . . . . . . . . . . . . . . . 7 0
The Lessons of the German V-2 Missile Program . . . . . . . . . 7 0
- The Early German Rocket Program . . . . . . . . . . . . . . . 7 0
- Wartime Production of the V-2 . . . . . . . . . . . . . . . . . . 7 4
- Analyzing the V-2 in Today’s Context . . . . . . . . . . . . . . 7 4
The Private Experimental Rocketeers . . . . . . . . . . . . . . . 7 7
- The California Societies . . . . . . . . . . . . . . . . . . . . . 7 7
- Examples of Successful Designs . . . . . . . . . . . . . . . . . 7 8
- The Lesson of the Backyard Rockets . . . . . . . . . . . . . . . 8 3
Other Examples of Simple Rocket Engines . . . . . . . . . . . . 8 5
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9
6 SOME KEY DESIGN CHOICES . . . . . . . . . . . . . . . . . . . 9 3
Manned versus Unmanned . . . . . . . . . . . . . . . . . . . . . 9 3
- The Future of the Space Shuttle . . . . . . . . . . . . . . . . . 9 3
- The Advisability of Mixing People and Payloads . . . . . . . . 9 6
Expendable versus Reusable . . . . . . . . . . . . . . . . . . . . 9 6
- The Space Shuttle’s Reusable Solid Rocket Boosters . . . . . . 9 7
- Single-Stage-to-Orbit . . . . . . . . . . . . . . . . . . . . . . . 9 8
- Expendable and Reusable Unmanned Staged Vehicles . . . . 100
Solids versus Liquids versus Hybrids . . . . . . . . . . . . . . . 102
- Scope of the Trade Discussion . . . . . . . . . . . . . . . . . . 102
- Specific Impulse Comparison . . . . . . . . . . . . . . . . . . 103
- Positive Attributes of Solid Propellants . . . . . . . . . . . . . 103
- Negative Attributes of Solid Propellants . . . . . . . . . . . . 104
- Environmental Impact Comparison . . . . . . . . . . . . . . . 106
- Comparison of Throttling Capability . . . . . . . . . . . . . . 108
- Other Comparisons of Various Propellant Attributes . . . . . 109
- Liquids Hold the Best Potential to Reduce Cost . . . . . . . . 111
Pump-Fed versus Pressure-Fed . . . . . . . . . . . . . . . . . . 111
- Engine Power Cycles . . . . . . . . . . . . . . . . . . . . . . . 112
- The Rationale for Using Turbomachinery . . . . . . . . . . . . 112
- Pressure-Fed Booster Designs . . . . . . . . . . . . . . . . . . 112
- Pump-Fed versus Pressure-Fed Studies . . . . . . . . . . . . . 113
- The ‘Vehicle Weight Is a Cost Driver” Myth . . . . . . . . . . 113
- SSME and STME Complexities and Part Counts . . . . . . . . 119
- The Cost and Complexity of Turbomachinery . . . . . . . . . . 119
- Examples of Turbomachinery-Induced Problems . . . . . . . . 121
- Pressure-Fed Booster Pressurization Systems . . . . . . . . . 122
- Pressure-Fed Engine Combustion Stability . . . . . . . . . . . 123
- Historical Pump-Fed/Pressure-Fed Comparisons . . . . . . . . 124
- A Survey of Pressure-Fed Engines . . . . . . . . . . . . . . . . 124
- Other Simplification Possibilities . . . . . . . . . . . . . . . . 130
- Pressure-Fed Systems Offer the Possibility of Lower Costs . . . . . . . . . . . . . . . . . . . . . . . . . 131
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7 CULTURAL CHANGES . . . . . . . . . . . . . . . . . . . . . . . . 137
Recent Launch System Proposals . . . . . . . . . . . . . . . . . 137
- NLS and Spacelifter . . . . . . . . . . . . . . . . . . . . . . . 138
- SSRT and NASP . . . . . . . . . . . . . . . . . . . . . . . . . 138
Cultural Changes to Get a Space Truck . . . . . . . . . . . . . . 140
Designing for Minimum Cost . . . . . . . . . . . . . . . . . . . . 140
- The Effects of DFMC Application . . . . . . . . . . . . . . . . 141
Simplicity/Robustness Instead of Redundancy . . . . . . . . . . 143
Vehicle Instrumentation and Range Operations Changes . . . . 144
Using Commercial Manufacturing Techniques . . . . . . . . . . 147
Shedding the Fear of Failure . . . . . . . . . . . . . . . . . . . . 148
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8 BOOSTER/SPACECRAFT COST RELATIONSHIPS . . . . . . . . 151
Lowering Spacecraft Cost through
Weight/Volume Growth . . . . . . . . . . . . . . . . . . . . . . . 152
- The Lessons of Russian Spacecraft Design . . . . . . . . . . . 152
- Benefits of Spacecraft Weight Growth . . . . . . . . . . . . . . 153
- Studies on Spacecraft Weight/Volume Growth Benefits . . . . 154
Opportunities for Increased Reliability . . . . . . . . . . . . . . 155
Opportunities for Increased Design Weight Margins . . . . . . . 156
Booster/Spacecraft Interface Standardization . . . . . . . . . . . 159
Bus Standardization and Off-the-Shelf Subsystems . . . . . . . 161
Specific Benefits of Large, Inexpensive Boosters . . . . . . . . . 162
- Benefits to Spacecraft Structural Designs . . . . . . . . . . . 163
- Benefits to Spacecraft Propulsion System Design . . . . . . . 165
- Benefits to Spacecraft Power System Design . . . . . . . . . . 167
- Benefits to Spacecraft Electronics Design . . . . . . . . . . . . 168
- Benefits to Spacecraft Communications System Design . . . . 169
- Benefits to Spacecraft Thermal Control System Design . . . . 169
- Benefits to Spacecraft Design Life Specifications . . . . . . . . 170
Avoiding Misuse of Increased Launch Capacity . . . . . . . . . . 170
Other Benefits of Low-Cost Boosters and Spacecraft . . . . . . . 172
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9 MINIMUM COST DESIGN LAUNCH VEHICLES . . . . . . . . . 177
Sea-Launched Space Booster Studies . . . . . . . . . . . . . . . 178
Early Air Force and NASA-Sponsored Studies . . . . . . . . . . 180
- Initial MCD Booster Designs . . . . . . . . . . . . . . . . . . . 181
- Initial Industry Studies . . . . . . . . . . . . . . . . . . . . . 185
- The Boeing MCD Booster Study Contract . . . . . . . . . . . . 188
- TRW MCD Booster Concepts . . . . . . . . . . . . . . . . . . . . 189
- A Lost Opportunity for MCD Booster Development . . . . . . 190
More Recent Minimum Cost Design Initiatives . . . . . . . . . . 190
- The SEALAR Development Effort . . . . . . . . . . . . . . . . 192
- Another Lost Opportunity for MCD Booster Development . . . 193
Current Low-Cost Booster Development Efforts . . . . . . . . . 193
- The McDonnell Douglas Delta Replacement . . . . . . . . . . 193
- The PacAstro Smallsat Booster . . . . . . . . . . . . . . . . . 194
- The Microcosm Ultra-Low-Cost Booster . . . . . . . . . . . . . 194
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . 201
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 203
- MCD Booster Specifics . . . . . . . . . . . . . . . . . . . . . . 205
- Policy Changes and Initiatives . . . . . . . . . . . . . . . . . . 208
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211