Dramatically greater improvements can be had by mixing the nuclear fuel into the working fluid, and allowing the reaction to take place in the liquid mixture itself. This is the basis of the so-called liquid-core engine, which can operate at higher temperatures beyond the melting point of the fuel. In this case the maximum temperature is whatever the container wall (typically a neutron reflector of some sort) can handle, while actively cooled by the hydrogen. It is expected that the liquid-core design can deliver performance on the order of 1300 to 1500 lbf·s/lb (13–15 kN·s/kg).<br /><br />These engines are difficult to build however; the reaction time of the nuclear fuel is much higher than the heating time of the working fluid, meaning that some system must be used to trap the fuel inside the engine while still allowing the working fluid to easily exit through the nozzle. Most liquid-phase engines have focussed on rotating the fuel/fluid mixture at very high speeds, forcing the fuel to the outside due to centrifugal force (uranium is heavier than hydrogen). In many ways the design mirrors the particle-bed design, although operating at even higher temperatures.<br /><br />An alternative liquid-core design, the nuclear salt-water rocket has been proposed by Robert Zubrin. In this design, the working fluid is water, which serves as neutron moderator as well. The nuclear fuel is not retained, drastically simplifying the design. However, by its very design, the rocket would discharge massive quantities of extremely radioactive waste and could only be safely operated well outside the earth's atmosphere and perhaps even entirely outside earth's magnetosphere.<br /><br />-From Wikipedia, the free encyclopedia<br /><br />*In this design, the working fluid is water, which serves as neutron moderator as well.*<br /><br />'In theory' liquid-core NTR's based on water as propellant can have higher Isp's because water serves as a 'neutron moderater' cooling the engine before it flies apar