ok dude, im going to give you a more thorough response as to why it wouldn't work. I couldn't before because I was studying for my finals. Also, wait for the picture to load first.<br /><br />Ok first of all, excuse me for the crude drawings, im not too good with ms paint. Secondly, ok what you have is the station rotating. The station has a tangential velocity of V, and requires a centripetal acceleration of a. Lets say you want to have 1/3g at the rim, then your a = 1/3g or, v = sqrt(r/3g). Now, let's say you want to "dock" the shuttle on the outer rim of the station. First of all, the shuttle will require a velocity equal to v relative to the station in order to match it's speed. Secondly, and this is the part that requires WAY TOO MUCH FUEL, is that the shuttle will be required to have an acceleration in the direction of the station equal to a. That means, the shuttle will have to be constantly thrusting in order to stay motionless relative to the station. Now, getting the shuttle to have a constant acceleration of 1/3g takes too much fuel. That's your number one problem.<br /><br />Secondly, say you could do that, say you have some really cool propulsion system that uses very little fuel and can give you a constant 1/3g acceleration. Now you're problem is that you need to catch the shuttle. You need something to grab it's "wheels"(I say "wheels" because they could easily be something designed just for docking) So now you have grabbed it's docking mechanism and you are pulling in the shuttle to attach to the outer rim... Well say you get it on, and let's say this shuttle weighs about 30,000kg... You'r outer support structure would be required to support F = ma, F = 30,000 * g/3 = 98kN. You would need to support 98kN of weight! Now these stations usually don't have very strong outer surfaces, so you'r docking mechanism woud just be ripped off and the shuttle would be flung out away from the station. Not to mention each time that would happen, the a