Why NASA's Mars rover Perseverance will use nuclear power to keep itself warm

At a price of $75 million for 110 watts, we won't be using these MMRTG*s for much else. No wonder space probes are so costly, even without this energy source. And powering the rover for 14 years is pretty amazing. Just hope the rest of the rover lasts that long.

These particular RTGs actually use PU238, not the PU239 found in nuclear weapons, which is why they don't have a lot of this isotope, and which probably adds largely to their price tags.

Anybody with expertise in these, it would be nice to hear from you. There are different kinds of RTGs using various isotopes, both in use and under research. They are quite amazing devices!

* https://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
 

Kdt

Jun 2, 2021
1
0
10
Visit site
Plutonium electric power isn't "nuclear." Nuclear power refers to modifying the nucleus of atoms either by splitting or combining. In typical nuclear power, the former is done by combining a large enough amount of radioactive material to form a "critical mass" which accelerates the natural decay process, causing massive amounts of heat, which then heats water into steam to turn a turbine (like most other power generation). That's not at all what a plutonium electric generator does. It just sits there and naturally decays, unaffected, which causes natural heat which is converted directly to electricity using a natural electric effect. It's not a "nuclear power source."
 
Plutonium electric power isn't "nuclear." Nuclear power refers to modifying the nucleus of atoms either by splitting or combining. In typical nuclear power, the former is done by combining a large enough amount of radioactive material to form a "critical mass" which accelerates the natural decay process, causing massive amounts of heat, which then heats water into steam to turn a turbine (like most other power generation). That's not at all what a plutonium electric generator does. It just sits there and naturally decays, unaffected, which causes natural heat which is converted directly to electricity using a natural electric effect. It's not a "nuclear power source."

I think this post is misleading, so I will try to provide a clearer explanation.

First, "nuclear" energy is energy that is contained in the nuclei of atoms, rather than in the electron clouds around the nuclei. What we refer to as chemical energy involves interaction of just the electron clouds, without changing the nuclei of the interacting atoms

Nuclear energy can be released by several mechanisms.

1. Natural radioactive decay. Elements are assigned to chemical names based on the number of protons in their nuclei, and then subdivided into isotopes of each chemical based on the number of neutrons in their nuclei. Some combinations of protons and neutrons are stable, and others are not, and tend to shoot out parts of the nucleus to get to a stable combination of protons and neutrons. This releases nuclear energy. Depending on the element and isotope, the particles shot out of the nucleus can be:

(A) alpha particles, which are a clump of 2 protons plus 2 neutrons, and those particle soon attract 2 electrons into orbits around them and become Helium-4 atoms, or

(B) beta particles that come from converting a neutron in the nucleus to a proton, and these beta particles/electrons just become normal electrons in orbits around atoms, and

(C) often gamma rays, which are very high energy light (photons), come out of the nucleus as the particles leave.

Capturing the fast moving particles and photons in the surrounding material heats the material and can be used to make useful work. The alpha particles are the easiest to capture, because their double positive charge makes them interact most strongly with surrounding matter, and that gives them a limited, very short range through that material. Beta particles have only a single charge, so they travel a bit further into surrounding material, but also have a range limit. Gamma rays have no charge, and interact only in a probabilistic way, so they penetrate in a manner such that their intensity is reduced by a fraction per unit distance, going a long way before their intensity is effectively reduced to near zero.

This distinction in how the different nuclear radiation emissions interact with matter makes it easy to provide shielding against alpha particles and beta particles, but not gamma rays. So, when engineers are designing a nuclear isotopic power source, they want something that provides a lot of energy in a form that is easy to keep where they want it and easy to prevent from going where they don't want it - and that is something that emits only alpha particles, with no gamma rays. That is what Plutonium 238 does - emits high energy alpha particles and no gamma rays. So, it is a very desirable material for making heat that can be turned into power for use in space probes that cannot rely on solar power (because, for instance, needing to work in dusty environments like Mars, or going to regions of the solar system too far from the sun, like the Voyager probes are still doing 45 years after launch).

B. Nuclear energy can also be released from some atomic nuclei by splitting the nucleus with a neutron from outside the nucleus. That is called fission, and is what is commonly used in commercial nuclear power reactors here on Earth (and elsewhere). A few isotopes of very heavy atomic nuclei are so unstable that they spontaneously emit neutrons, as well as alpha particles and gamma rays. And those neutrons can sometimes hit some of the other heavy nuclei and cause them to fission, releasing a lot more energy than happens when just an alpha particle is released. Fission releases two (or occasionally three) lighter isotopes, plus 2 or 3 neutrons, and a lot of gamma rays. Nuclear fission reactors are designed to manage a chain reaction so that only one of those released neutrons from each fission ends up, on average, causing another fission of another nucleus of the fissionable material, with the rest getting absorbed elsewhere - thus creating a steady release of power in a controlled manor. (Atomic bombs are designed to use as many of the released neutrons as possible to cause additional fissions, making the energy release increase exponentially until the fissionable material is exhausted or widely dispersed - an explosion.) Fission leaves a mess of radioactive lighter atoms, emitting beta particles and gamma rays, so it is hard to shield surrounding things from the damaging effects or radiation. Shielding materials are heavy, so launching reactors and their shielding into orbit or beyond is expensive. But, some reactors have been put into orbit (e.g., the SNAP series) and may be used on moon bases in the future.

C. To complete the discussion, nuclear energy can also be released by fusing 2 light weight nuclei, such as hydrogen nuclei, to make heavier nuclei such as helium. That is what the Sun does with its tremendous pressure and temperature. It uses 4 light hydrogen atoms (one electron orbiting one proton) and squeezes them together so that 2 of the electrons combine with 2 of the protons to produce 2 neutrons, and those 2 neutrons combine with the other 2 protons to make the nucleus of helium-4 (which is the same thing as an alpha particle BTW). That releases a lot of energy. We use almost the same process here on earth to make hydrogen bombs, and hope to someday be able to use the fusion process to make rate-controlled reactions for generating electricity. I said that we use almost the same process here on Earth because we "cheat" by using already made neutrons. So, what we can do requires a lot less pressure and temperature than what the Sun does when it is making the neutrons. What we do on earth is use the neutrons that are already in the rare, unusually heavy isotopes of hydrogen, called Deuterium if there is one neutron in the nucleus with the proton, and Tritium if there are 2 neutrons in the hydrogen nucleus.

As said at the beginning, all 3 of these processes release energy from the nuclei of the atoms involved, not just the energy involved in the cloud of atoms surrounding the nuclei, so these are all nuclear energy sources.
 
Last edited: