Well, this is an interesting report on DM. The reference paper cited is 23-page PDF. I note from the paper:
Draft version April 21, 2023
Typeset using LATEX twocolumn style in AASTeX631
Simulating Atomic Dark Matter in Milky Way Analogues,
https://arxiv.org/abs/2304.09878
"ABSTRACT Dark sector theories naturally lead to multi-component scenarios for dark matter where a subcomponent can dissipate energy through self-interactions, allowing it to eciently cool inside galaxies.
We present the rst cosmological hydrodynamical simulations of Milky Way analogues where the
majority of dark matter is collisionless Cold Dark Matter (CDM), but a sub-component (6%) is strongly
dissipative minimal Atomic Dark Matter (ADM)."
"1. INTRODUCTION...Dark sectors frequently include a fraction of DM with dissipative self-interactions, which can cool and clump in opposition to the purely gravitational dynamics of CDM. A useful benchmark model for such scenarios is Atomic Dark Matter (ADM), which consists of a dark proton, p0, and dark electron, e0, that interact through a massless dark photon with coupling, 0 (Kaplan et al. 2009). The ADM can form a dark hydrogen bound-state and radiatively cools in direct analogy to the Standard Model. We assume a minimal model that has no dark nuclear physics and only couples to the Standard Model through gravity. Moreover, we assume that the ADM abundance is set asymmetrically, so that the abundance of dark anti-particles is negligible (Zurek 2013; Kaplan et al. 2011)."
I found 7 references to assume or assumed in the paper. Also some other good stuff
"On cosmic scales, ADM manifests through dark acoustic oscillations and contributions to Ne (Cyr-Racine
et al. 2014; Gurian et al. 2022a). Current cosmological constraints allow for ADM to comprise & O(10%) of
the DM for a wide range of parameters (Bansal et al. 2022b,a). On much smaller scales, the signatures of
an ADM sub-component can potentially be spectacular. ADM gas clouds can collapse and condense into dark compact objects, giving rise to dark white dwarfs (Ryan & Radice 2022) and non-stellar-mass black holes (Shandera et al. 2018; Fernandez et al. 2022), as well as mirror (neutron) stars (Curtin & Setford 2020a,b; Hippert et al. 2022b,a) (if there is dark nuclear physics)."
It is time to show a database listing all DM stuff now