Isn’t the only difference between general relativity and quantum mechanics the scale of time and space we are measuring? Isn’t general relativity probabilistic just like quantum mechanics? GR is exceptionally good at predicting how large objects will move through space, but it is not perfect, and it is measuring objects in the past. For it to be perfect it would need to consider every variable in the universe. Like a butterfly could flap its wings on a planet in Andromeda that could cause an asteroid to hit mars and knock it out of its orbit. The further into the future we try to predict with GR the less accurate it becomes.
On the other hand, can’t QM be predictable just like GR if we measure short enough distances? For example, if we take the double slit experiment and place the electron gun and the screen only a few Planck lengths away from each other wouldn’t the wave function become a lot narrower or even become a single point?
To me it seems that all objects both large and small start off predictable like GR and become probabilistic like QM after a certain amount of time and distance. This amount of time is based on how much mass an object has. The more mass an object has the easier its movement is to predict through space but its not forever. So, GR and QM may not be different. One might just become before the other.
The barrier between these two theories is when we start to approach the present moment in time. The past is observable and measurable therefore predictable, and the future is unobservable and can only be probabilistic. When we look out into the universe we are looking into the past. That is why GR works so well. But when we are looking at particles it becomes unpredictable because we are making observations too close to the present moment and too close to the unobservable future.
On the other hand, can’t QM be predictable just like GR if we measure short enough distances? For example, if we take the double slit experiment and place the electron gun and the screen only a few Planck lengths away from each other wouldn’t the wave function become a lot narrower or even become a single point?
To me it seems that all objects both large and small start off predictable like GR and become probabilistic like QM after a certain amount of time and distance. This amount of time is based on how much mass an object has. The more mass an object has the easier its movement is to predict through space but its not forever. So, GR and QM may not be different. One might just become before the other.
The barrier between these two theories is when we start to approach the present moment in time. The past is observable and measurable therefore predictable, and the future is unobservable and can only be probabilistic. When we look out into the universe we are looking into the past. That is why GR works so well. But when we are looking at particles it becomes unpredictable because we are making observations too close to the present moment and too close to the unobservable future.