C
crazyeddie
Guest
This is a very exciting development, and bodes well for ground-based astronomy:
The next generation of adaptive optics has arrived at the Large Binocular Telescope (LBT) in Arizona, providing astronomers with a new level of image sharpness never before seen. Developed in a collaboration between Italy's Arcetri Observatory of the Istituto Nazionale di Astrofisica (INAF) and the University of Arizona's Steward Observatory, this technology represents a remarkable step forward for astronomy. The LBT, with its two 8.4 metre -mirrors, is the largest optical telescope in the world.
The $120 million LBT on Mount Graham utilizes two giant 8.4 metre mirrors and with the new adaptive optics the telescope will achieve the resolution of a 22.8-metre, or approximately 75-foot telescope. Implementation of the adaptive optics is the latest of several major breakthroughs for the LBT in recent months. For example, in April 2010, a near-infrared camera/spectrograph developed by a consortium of German institutes became available to astronomers for scientific observations, allowing them to penetrate interstellar dust clouds and reveal the secrets of the youngest and most distant galaxies. The new adaptive optics will enable other such versatile instruments to achieve their full potential on the LBT.
Until recently, ground-based telescopes had to live with wavefront distortion caused by the Earth's atmosphere which significantly blurred images of distant objects (this is why stars appear to twinkle to the human eye). While there have been advancements in adaptive optics technology to correct atmospheric blurring, the LBT's innovative system truly takes this concept to a whole new level.
In closed-dome tests beginning May 12 and sky tests every night since May 25, astronomer Simone Esposito and his INAF team tested the new device, achieving exceptional results. The LBT's adaptive optics system, called the First Light Adaptive Optics system (FLAO), immediately outperformed all other comparable systems, delivering an image quality greater than three times sharper than the Hubble Space Telescope using just one of the LBT's two 8.4 metre mirrors. As soon as the adaptive optics are in place for both mirrors and their light is combined appropriately, it is expected that the LBT will achieve image sharpness ten times that of the Hubble.
http://www.astromart.com/news/news.asp?news_id=1084
The next generation of adaptive optics has arrived at the Large Binocular Telescope (LBT) in Arizona, providing astronomers with a new level of image sharpness never before seen. Developed in a collaboration between Italy's Arcetri Observatory of the Istituto Nazionale di Astrofisica (INAF) and the University of Arizona's Steward Observatory, this technology represents a remarkable step forward for astronomy. The LBT, with its two 8.4 metre -mirrors, is the largest optical telescope in the world.
The $120 million LBT on Mount Graham utilizes two giant 8.4 metre mirrors and with the new adaptive optics the telescope will achieve the resolution of a 22.8-metre, or approximately 75-foot telescope. Implementation of the adaptive optics is the latest of several major breakthroughs for the LBT in recent months. For example, in April 2010, a near-infrared camera/spectrograph developed by a consortium of German institutes became available to astronomers for scientific observations, allowing them to penetrate interstellar dust clouds and reveal the secrets of the youngest and most distant galaxies. The new adaptive optics will enable other such versatile instruments to achieve their full potential on the LBT.
Until recently, ground-based telescopes had to live with wavefront distortion caused by the Earth's atmosphere which significantly blurred images of distant objects (this is why stars appear to twinkle to the human eye). While there have been advancements in adaptive optics technology to correct atmospheric blurring, the LBT's innovative system truly takes this concept to a whole new level.
In closed-dome tests beginning May 12 and sky tests every night since May 25, astronomer Simone Esposito and his INAF team tested the new device, achieving exceptional results. The LBT's adaptive optics system, called the First Light Adaptive Optics system (FLAO), immediately outperformed all other comparable systems, delivering an image quality greater than three times sharper than the Hubble Space Telescope using just one of the LBT's two 8.4 metre mirrors. As soon as the adaptive optics are in place for both mirrors and their light is combined appropriately, it is expected that the LBT will achieve image sharpness ten times that of the Hubble.
http://www.astromart.com/news/news.asp?news_id=1084