On Mars, raindrops won't splash

Status
Not open for further replies.
S

silylene

Guest
<p>The thread on "weird question&nbsp;about Mars"&nbsp;joggled&nbsp;me to recall this interesting piece of trivia, which I had intended to post on SDC way back then, which I don't think I ever did.</p><p>One of the interesting hydrodynamic properties of liquid drops splashing on a surface is that the splashback forms from an interaction of the moving drop's surface with the resistance of the atmosphere.</p><p>The air pressure at the bottom of Hellas on Mars (lowest point) is about 0.012 atmospheres, which is barely high enough that water could exist as a liquid.&nbsp; This pressure is low enough that rain striking the bottom of Hellas will not splash.&nbsp; It will just smoothly slide away.</p><p>The air pressure on Mt Everest = 0.29 atmospheres.&nbsp; On Mt. Everest, at this low pressure, raindrops also won't splash!&nbsp; See the pcitures below.&nbsp; (100 kPA = 1 atm.&nbsp; 30 kpa = 0.3 atm.)</p><p><table border="0" cellspacing="8" cellpadding="0" align="left"><tbody><tr><td colspan="3"><img src="http://mrsec.uchicago.edu/research/nuggets/splash/splash.jpg" alt="" width="465" height="173" />
 
J

JonClarke

Guest
<p>Splash is a highly effective erosion agent on Earth.&nbsp; These results&nbsp;suggest that rain erosion may not be as effective on Mars but that infiltration may be faster.</p><p>Jon</p> <div class="Discussion_UserSignature"> <p><em>Whether we become a multi-planet species with unlimited horizons, or are forever confined to Earth will be decided in the twenty-first century amid the vast plains, rugged canyons and lofty mountains of Mars</em>  Arthur Clarke</p> </div>
 
S

silylene

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>Splash is a highly effective erosion agent on Earth.&nbsp; These results&nbsp;suggest that rain erosion may not be as effective on Mars but that infiltration may be faster.Jon <br />Posted by jonclarke</DIV><br /><br />Jon, that's a good point.&nbsp; I should've considered that - sometimes I think too much as a chemist.&nbsp; So if there was rain on Mars. would the lack of "splash" cause the gullies to look different (width-to-height of a gully, or degree of branching, or perhaps just decrease the amount of available runoff since more of the drop would have soaked in, or perhaps reduced amount of soils transported downstream?&nbsp; Has anyone ever published on this?&nbsp;I highlighted two sections in red that were interesting to me below.</p><p align="center"><font size="1"><img src="http://www.uwsp.edu/geo/faculty/ritter/images/lithosphere/mass_wasting_erosion/rain_splash_NRCS_p0000003256_small.jpg" border="0" alt="" width="327" height="234" /> </font></p><p align="center"><strong>Erosion by rain splash</strong></p><p>&nbsp;</p><h1 class="mainh1">Splash Erosion (Rain Drop Impact)<img src="http://www.dpiw.tas.gov.au/inter.nsf/spacer.gif" alt="" width="1" height="25" /></h1><p><font face="Verdana" size="2">http://www.dpiw.tas.gov.au/inter.nsf/WebPages/TPRY-5Z522V?open</font></p><p><font face="Verdana" size="2">Splash erosion or rain drop impact represents the first stage in the erosion process. Splash erosion results from the bombardment of the soil surface by rain drops. Rain drops behave as little bombs when falling on exposed or bare soil, displacing soil particles and destroying soil structure. Studies in America have shown that splashed particles may rise as high as 0.6 metres above the ground and move up to 1.5 metres horizontally. Splash erosion results in the formation of surface crusts which reduce infiltration resulting in the start of runoff.</font><br /><br /><font face="Verdana" size="2">Splash erosion:</font><font face="Times New Roman" size="3"> </font></p><ul><li><font face="Verdana" size="2">Is the first stage in the erosion process </font></li><li><font face="Verdana" size="2">Results from the bombardment of the soil surface by raindrops </font></li><li><font face="Verdana" size="2">Is the primary cause of soil detachment and soil disintegration </font></li><li><font face="Verdana" size="2" color="#ff0000">Means that resettled sediment blocks soil pores resulting in surface crusting and lower infiltration.</font></li></ul><font size="2"><h1>Raindrop research improves understanding of water erosion</h1><h5 style="padding:0px">&nbsp;n&auml;chste Meld<img style="vertical-align:middle" src="http://www.innovations-report.de/images/icons/go-next.gif" alt="" />ung <img style="vertical-align:middle" src="http://www.innovations-report.de/images/icons/go-next.gif" alt="" /></h5><h6 class="datum">http://www.innovations-report.de/html/berichte/agrar_forstwissenschaften/bericht-77244.html</h6><h6 class="datum">22.01.2007</h6><h2>There is a dark side to even the humble raindrop</h2><div id="Ads_CAD" style="border-top:#3331pxsolid;margin-top:10px;margin-bottom:5px;padding-bottom:20px;border-bottom:#3331pxsolid"><p style="font-size:10px;margin:2px0px;color:#555;padding:0px"><font size="4">A single drop is harmless, but when billions of raindrops from a cloudburst fall on bare soil they strike like billions of tiny hammers, dislodging tons of soil per acre which is carried away by surface runoff.</font></p></div><div style="margin-bottom:10px;width:170px;margin-right:10px"></div><p>This process, called splash erosion, is of critical importance to agriculture. It is the initial stage of water erosion, which causes an estimated $27 billion in on-site economic losses in the United States annually. In addition, rain splash has played a major role over geologic time in sculpting the features of the mountains and cliffs of the world, particularly those in arid and semi-arid regions.<br /><br />Despite its importance, there is a lack of understanding of the fundamental processes involved in this natural phenomenon that makes it difficult for researchers to assess the reliability of the experimental data that exists. This lack is addressed by the first study to use a high-speed camera to analyze the interaction between individual rain drops and soil particles, published on Jan. 16 in the Journal of Geophysical Research. <br /><br />In the new study researchers from Vanderbilt and Arizona State University have dispelled a 50-year-old misconception about how rain-splash transport works and have produced a theoretical model for the way in which the momentum carried by raindrops is transferred to the sand grains that are blasted away from the impact site. (Individual raindrops, which travel at speeds up to 20 miles per hour, can splash soil particles up to five feet horizontally and two feet in the air.)<br /><br />When the model is used with new sources of information like Doppler radar, which can provide data on average raindrop size and velocity in actual rainstorms, it could provide more reliable estimates of the amount of splash erosion taking place in different environments.<br /><br />&ldquo;The more we understand the basic physics of the splash erosion process, the better we can become at controlling it in the farmer&rsquo;s field,&rdquo; says David Furbish, professor of earth and environmental sciences at Vanderbilt, who directed the study. His collaborators were Mark Schmeeckle, assistant professor of geography at Arizona State University, Vanderbilt Research Associate Simon Mudd, and Vanderbilt students Katherine Hamner and Miriam Borosund, now at Dartmouth College.<br /><br />The experiments consisted of mounting a 20-foot PVC pipe vertically and attaching a syringe at the top of the pipe. The distance was great enough so that the raindrops nearly reached terminal velocity, the fastest speed that they can travel through still air. The pipe prevented errant air currents from deflecting the drops. A sand target, which was two centimeters deep and 2.5 centimeters in diameter, was set flush to a surrounding surface that is covered with sticky paper. The syringe produced individual water drops of different sizes. When a drop hit the target, a high-speed camera, operating at 500 frames per second, recorded the dynamic interactions between the water and the sand. The grains ejected by each impact stuck to the surrounding paper where they hit, allowing the researchers to plot their positions precisely.<br /><br />The researchers investigated the impacts of raindrops of three sizes: two, three and four millimeters in diameter. Natural raindrops come in sizes up to 6 millimeters. The water drops were dropped onto three grades of quartz sand: fine, medium and coarse with grain sizes of 0.18, 0.35 and 0.84 millimeters, respectively. The experiment also investigated the effect of slope by setting the target at six inclinations (0, 10, 15, 20, 25 and 30 degrees).<br /><br />The high-speed camera revealed that when small drops fell onto coarse sand, they hit without a splash and disappeared with scarcely a trace. But when a large drop falls onto fine sand, it flattens out and pushes a ridge of grains ahead of it. At about the same time that it blasts the sand grains into the air, the drop begins to contract, pulled back by its own surface tension, leaving behind a small impact crater.<br /><br />The difference in the impact of different size raindrops didn&rsquo;t come as a surprise. The energy in raindrops increases dramatically as they get bigger. For one thing, they weigh more. The mass of a five millimeter raindrop is 125 times greater than that of a one millimeter drop. In addition, larger drops travel faster. The terminal velocity of a five millimeter drop is twice that of a one millimeter drop. As a result, a five millimeter drop has 250 times the destructive energy of the one millimeter drop.<br /><br />When they began tilting the target to see what happens on sloping surfaces, however, they did discover something they didn&rsquo;t expect. <font color="#ff0000">For more than 50 years, scientists have known that soil particles detached by rain splashes move down slope farther than they move sideways or upslope. The generally accepted explanation has been that this is caused by the fact that particles ejected down slope travel farther before coming to rest than those ejected in other directions. The experiment confirmed this effect but found that there was a second, unexpected contribution: More grains are ejected in the down-slope direction than in other directions, and they are ejected at higher velocities. This is particularly important because splash erosion does the most damage on sloping surfaces. Impacts on inclined surfaces also replicate those of wind-driven drops.<br /></font></p></font> <div class="Discussion_UserSignature"> <p align="center"><font size="1">petet = <font color="#800000"><strong>silylene</strong></font></font></p><p align="center"><font size="1">Please, please give me my handle back !</font></p> </div>
 
B

baulten

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>Jon, that's a good point.&nbsp; I should've considered that - sometimes I think too much as a chemist.&nbsp; So if there was rain on Mars. would the lack of "splash" cause the gullies to look different (width-to-height of a gully, or degree of branching, or perhaps just decrease the amount of available runoff since more of the drop would have soaked in, or perhaps reduced amount of soils transported downstream?&nbsp; Has anyone ever published on this?&nbsp;I highlighted two sections in red that were interesting to me below. Erosion by rain splash&nbsp;Splash Erosion (Rain Drop Impact)http://www.dpiw.tas.gov.au/inter.nsf/WebPages/TPRY-5Z522V?openSplash erosion or rain drop impact represents the first stage in the erosion process. Splash erosion results from the bombardment of the soil surface by rain drops. Rain drops behave as little bombs when falling on exposed or bare soil, displacing soil particles and destroying soil structure. Studies in America have shown that splashed particles may rise as high as 0.6 metres above the ground and move up to 1.5 metres horizontally. Splash erosion results in the formation of surface crusts which reduce infiltration resulting in the start of runoff.Splash erosion: Is the first stage in the erosion process Results from the bombardment of the soil surface by raindrops Is the primary cause of soil detachment and soil disintegration Means that resettled sediment blocks soil pores resulting in surface crusting and lower infiltration.Raindrop research improves understanding of water erosion&nbsp;n&auml;chste Meldung http://www.innovations-report.de/html/berichte/agrar_forstwissenschaften/bericht-77244.html22.01.2007There is a dark side to even the humble raindropA single drop is harmless, but when billions of raindrops from a cloudburst fall on bare soil they strike like billions of tiny hammers, dislodging tons of soil per acre which is carried away by surface runoff.This process, called splash erosion, is of critical importance to agriculture. It is the initial stage of water erosion, which causes an estimated $27 billion in on-site economic losses in the United States annually. In addition, rain splash has played a major role over geologic time in sculpting the features of the mountains and cliffs of the world, particularly those in arid and semi-arid regions.Despite its importance, there is a lack of understanding of the fundamental processes involved in this natural phenomenon that makes it difficult for researchers to assess the reliability of the experimental data that exists. This lack is addressed by the first study to use a high-speed camera to analyze the interaction between individual rain drops and soil particles, published on Jan. 16 in the Journal of Geophysical Research. In the new study researchers from Vanderbilt and Arizona State University have dispelled a 50-year-old misconception about how rain-splash transport works and have produced a theoretical model for the way in which the momentum carried by raindrops is transferred to the sand grains that are blasted away from the impact site. (Individual raindrops, which travel at speeds up to 20 miles per hour, can splash soil particles up to five feet horizontally and two feet in the air.)When the model is used with new sources of information like Doppler radar, which can provide data on average raindrop size and velocity in actual rainstorms, it could provide more reliable estimates of the amount of splash erosion taking place in different environments.&ldquo;The more we understand the basic physics of the splash erosion process, the better we can become at controlling it in the farmer&rsquo;s field,&rdquo; says David Furbish, professor of earth and environmental sciences at Vanderbilt, who directed the study. His collaborators were Mark Schmeeckle, assistant professor of geography at Arizona State University, Vanderbilt Research Associate Simon Mudd, and Vanderbilt students Katherine Hamner and Miriam Borosund, now at Dartmouth College.The experiments consisted of mounting a 20-foot PVC pipe vertically and attaching a syringe at the top of the pipe. The distance was great enough so that the raindrops nearly reached terminal velocity, the fastest speed that they can travel through still air. The pipe prevented errant air currents from deflecting the drops. A sand target, which was two centimeters deep and 2.5 centimeters in diameter, was set flush to a surrounding surface that is covered with sticky paper. The syringe produced individual water drops of different sizes. When a drop hit the target, a high-speed camera, operating at 500 frames per second, recorded the dynamic interactions between the water and the sand. The grains ejected by each impact stuck to the surrounding paper where they hit, allowing the researchers to plot their positions precisely.The researchers investigated the impacts of raindrops of three sizes: two, three and four millimeters in diameter. Natural raindrops come in sizes up to 6 millimeters. The water drops were dropped onto three grades of quartz sand: fine, medium and coarse with grain sizes of 0.18, 0.35 and 0.84 millimeters, respectively. The experiment also investigated the effect of slope by setting the target at six inclinations (0, 10, 15, 20, 25 and 30 degrees).The high-speed camera revealed that when small drops fell onto coarse sand, they hit without a splash and disappeared with scarcely a trace. But when a large drop falls onto fine sand, it flattens out and pushes a ridge of grains ahead of it. At about the same time that it blasts the sand grains into the air, the drop begins to contract, pulled back by its own surface tension, leaving behind a small impact crater.The difference in the impact of different size raindrops didn&rsquo;t come as a surprise. The energy in raindrops increases dramatically as they get bigger. For one thing, they weigh more. The mass of a five millimeter raindrop is 125 times greater than that of a one millimeter drop. In addition, larger drops travel faster. The terminal velocity of a five millimeter drop is twice that of a one millimeter drop. As a result, a five millimeter drop has 250 times the destructive energy of the one millimeter drop.When they began tilting the target to see what happens on sloping surfaces, however, they did discover something they didn&rsquo;t expect. For more than 50 years, scientists have known that soil particles detached by rain splashes move down slope farther than they move sideways or upslope. The generally accepted explanation has been that this is caused by the fact that particles ejected down slope travel farther before coming to rest than those ejected in other directions. The experiment confirmed this effect but found that there was a second, unexpected contribution: More grains are ejected in the down-slope direction than in other directions, and they are ejected at higher velocities. This is particularly important because splash erosion does the most damage on sloping surfaces. Impacts on inclined surfaces also replicate those of wind-driven drops. <br /> Posted by petet</DIV></p><p>Isn't it likely that when the gullies formed the air pressure was significantly higher than it is now? </p>
 
S

silylene

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>Isn't it likely that when the gullies formed the air pressure was significantly higher than it is now? <br />Posted by baulten</DIV></p><p>You need more than 0.3 atm of pressure in order to get a splash.&nbsp; I would think that much of the rain may have occured when the pressure was greater than now, but less than 0.3 atm.&nbsp; &nbsp;That's about 20x higher than the current atmospheric pressure in Hellas.</p> <div class="Discussion_UserSignature"> <p align="center"><font size="1">petet = <font color="#800000"><strong>silylene</strong></font></font></p><p align="center"><font size="1">Please, please give me my handle back !</font></p> </div>
 
B

baulten

Guest
Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>You need more than 0.3 atm of pressure in order to get a splash.&nbsp; I would think that much of the rain may have occured when the pressure was greater than now, but less than 0.3 atm.&nbsp; &nbsp;That's about 20x higher than the current atmospheric pressure in Hellas. <br /> Posted by petet</DIV><br />True enough.&nbsp; I suppose we don't really have the knowledge to say for sure what kind of pressure we were looking at ~4 billion years ago.
 
S

Saiph

Guest
that...is pretty cool. <div class="Discussion_UserSignature"> <p align="center"><font color="#c0c0c0"><br /></font></p><p align="center"><font color="#999999"><em><font size="1">--------</font></em></font><font color="#999999"><em><font size="1">--------</font></em></font><font color="#999999"><em><font size="1">----</font></em></font><font color="#666699">SaiphMOD@gmail.com </font><font color="#999999"><em><font size="1">-------------------</font></em></font></p><p><font color="#999999"><em><font size="1">"This is my Timey Wimey Detector.  Goes "bing" when there's stuff.  It also fries eggs at 30 paces, wether you want it to or not actually.  I've learned to stay away from hens: It's not pretty when they blow" -- </font></em></font><font size="1" color="#999999">The Tenth Doctor, "Blink"</font></p> </div>
 
M

MeteorWayne

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>Isn't it likely that when the gullies formed the air pressure was significantly higher than it is now? <br />Posted by baulten</DIV><br /><br />Just a suggestion. If you are going to make a 1 line response, is it really necassary to copy the entire previous post you are replying to? Edit everything except 1 or 2 lines and the name of the poster.</p><p>It makes the pages smaller, which helps navigation.</p><p>Wayne</p> <div class="Discussion_UserSignature"> <p><font color="#000080"><em><font color="#000000">But the Krell forgot one thing John. Monsters. Monsters from the Id.</font></em> </font></p><p><font color="#000080">I really, really, really, really miss the "first unread post" function</font><font color="#000080"> </font></p> </div>
 
R

robnissen

Guest
Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>Just a suggestion. If you are going to make a 1 line response, is it really necassary to copy the entire previous post you are replying to? Edit everything except 1 or 2 lines and the name of the poster.It makes the pages smaller, which helps navigation.Wayne <br />Posted by MeteorWayne</DIV><br /><br /><font size="3">While I agree with your suggestion, part of this problem is this crappy software that SDC uses now.&nbsp; I have no idea why they didn't stick with their original software, which IIRC did not automatically post the entire message when you hit reply.&nbsp; Plus, is had the wonderful last post read feature.&nbsp; Que sera, sera.</font>
 
M

MeteorWayne

Guest
<p><BR/>Replying to:<BR/><DIV CLASS='Discussion_PostQuote'>While I agree with your suggestion, part of this problem is this crappy software that SDC uses now.&nbsp; I have no idea why they didn't stick with their original software, which IIRC did not automatically post the entire message when you hit reply.&nbsp; Plus, is had the wonderful last post read feature.&nbsp; Que sera, sera. <br />Posted by robnissen</DIV><br /><br />Still, it's not hard at all to edit most or all of the message out, and only takes a few seconds.</p><p>It just makes it easier for everyone.</p> <div class="Discussion_UserSignature"> <p><font color="#000080"><em><font color="#000000">But the Krell forgot one thing John. Monsters. Monsters from the Id.</font></em> </font></p><p><font color="#000080">I really, really, really, really miss the "first unread post" function</font><font color="#000080"> </font></p> </div>
 
Status
Not open for further replies.