Question What happens when we pass through Interstellar Clouds?

A bit more info from researchers in the field

[Submitted on 10 Sep 2024]

Earth's Mesosphere During Possible Encounters With Massive Interstellar Clouds 2 and 7 Million Years Ago​

Jesse A. Miller, Merav Opher, Maria Hatzaki, Kyriakoula Papachristopoulou, Brian C. Thomas
Our solar system's path has recently been shown to potentially intersect dense interstellar clouds 2 and 7 million years ago: the Local Lynx of Cold Cloud and the edge of the Local Bubble. These clouds compressed the heliosphere, directly exposing Earth to the interstellar medium. Previous studies that examined climate effects of these encounters argued for an induced ice age due to the formation of global noctilucent clouds (NLCs). Here, we revisit such studies with a modern 2D atmospheric chemistry model using parameters of global heliospheric magnetohydrodynamic models as input. We show that NLCs remain confined to polar latitudes and short seasonal lifetimes during these dense cloud crossings lasting ∼105 years. Polar mesospheric ozone becomes significantly depleted, but the total ozone column broadly increases. Furthermore, we show that the densest NLCs lessen the amount of sunlight reaching the surface instantaneously by up to 7% while halving outgoing longwave radiation.
 
For those who want a deeper research read.

[Submitted on 21 May 2006 (v1), last revised 12 Sep 2006 (this version, v2)]

Characterization of jovian plasma embedded dust particles​

Amara L. Graps (INAF-IFSI, Rome, Italy)
As the data from space missions and laboratories improve, a research domain combining plasmas and charged dust is gaining in prominence. Our solar system provides many natural laboratories such as planetary rings, comet comae and tails, ejecta clouds around moons and asteroids, and Earth's noctilucent clouds for which to closely study plasma-embedded cosmic dust. One natural laboratory to study electromagnetically-controlled cosmic dust has been provided by the Jovian dust streams and the data from the instruments which were on board the Galileo spacecraft. Given the prodigious quantity of dust poured into the Jovian magnetosphere by Io and its volcanoes resulting in the dust streams, the possibility of dusty plasma conditions exist. This paper characterizes the main parameters for those interested in studying dust embedded in a plasma with a focus on the Jupiter environment. I show how to distinguish between dust-in-plasma and dusty-plasma and how the Havnes parameter P can be used to support or negate the possibility of collective behavior of the dusty plasma. The result of applying these tools to the Jovian dust streams reveals mostly dust-in-plasma behavior. In the orbits displaying the highest dust stream fluxes, portions of orbits E4, G7, G8, C21 satisfy the minimum requirements for a dusty plasma. However, the P parameter demonstrates that these mild dusty plasma conditions do not lead to collective behavior of the dust stream particles.
 
You may find this paper interesting to read.

[Submitted on 15 Mar 2016]

A sound nebula: the origin of the Solar System in the field of a standing sound wave​

Svetlana Beck, Valeri Beck
According to the planetary origin conceptual model proposed in this paper, the protosun centre of the pre-solar nebula exploded, resulting in a shock wave that passed through it and then returned to the centre, generating a new explosion and shock wave. Recurrent explosions in the nebula resulted in a spherical standing sound wave, whose antinodes concentrated dust into rotating rings that transformed into planets. The extremely small angular momentum of the Sun and the tilt of its equatorial plane were caused by the asymmetry of the first, most powerful explosion. Differences between inner and outer planets are explained by the migration of solid matter, while the Oort cloud is explained by the division of the pre-solar nebula into a spherical internal nebula and an expanding spherical shell of gas. The proposed conceptual model can also explain the origin and evolution of exoplanetary systems and may be of use in searching for new planets.
 
Looking into the sky we can see remnants of supernova.

[Submitted on 21 Nov 2022 (v1), last revised 30 Nov 2022 (this version, v2)]

Peering into the Milky Way by FAST: IV. Identification of two new Galactic supernova remnants G203.1+6.6 and G206.7+5.9​

X. Y. Gao, W. Reich, X. H. Sun, H. Zhao, Tao Hong, Z. S. Yuan, P. Reich, J. L. Han

"" These results clearly indicate a non-thermal synchrotron emitting nature, confirming that G203.1+6.6 and G206.7+5.9 are large shell-type supernova remnants (SNRs). Based on morphological correlation between the radio continuum emission of G206.7+5.9 and the HI structures, the kinematic distance to this new SNR is estimated to be about 440 pc, placing it in the Local Arm.""
 
This orbital behavior of the Sun brings insights to our understanding of questions concerning the solar system evolution, the Earth environment changes, and the preservation of life on Earth.
[Submitted on 22 Mar 2021]

Dynamics of the spiral-arm corotation and its observable footprints in the Solar Neighborhood​

Douglas A. Barros, Angeles Pérez-Villegas, Tatiana A. Michtchenko, Jacques R. D. Lépine
This article discusses the effects of the spiral-arm corotation on the stellar dynamics in the Solar Neighborhood (SN). All our results presented here rely on: 1) observational evidence that the Sun lies near the corotation circle, where stars rotate with the same angular velocity as the spiral-arm pattern; the corotation circle establishes domains of the corotation resonance (CR) in the Galactic disk; 2) dynamical constraints that put the spiral-arm potential as the dominant perturbation in the SN, comparing with the effects of the central bar in the SN; 3) a long-lived nature of the spiral structure, promoting a state of dynamical relaxing and phase-mixing of the stellar orbits in response to the spiral perturbation. With an analytical model for the Galactic potential, composed of an axisymmetric background deduced from the observed rotation curve, and perturbed by a four-armed spiral pattern, numerical simulations of stellar orbits are performed to delineate the domains of regular and chaotic motions shaped by the resonances. Such studies show that stars can be trapped inside the stable zones of the spiral CR, and this orbital trapping mechanism could explain the dynamical origin of the Local arm of the Milky Way (MW). The spiral CR and the near high-order epicyclic resonances influence the velocity distribution in the SN, creating the observable structures such as moving groups and their radially extended counterpart known as diagonal ridges. The Sun and most of the SN stars evolve inside a stable zone of the spiral CR, never crossing the main spiral-arm structure, but oscillating in the region between the Sagittarius-Carina and Perseus arms. This orbital behavior of the Sun brings insights to our understanding of questions concerning the solar system evolution, the Earth environment changes, and the preservation of life on Earth.
 
Sometime =s i feel like giving a summary of the paper and yet I hold back, my opinion should not affect your reading.

[Submitted on 30 Aug 2024]

Accretion of the earliest inner solar system planetesimals beyond the water-snowline​

Damanveer S. Grewal, Nicole X. Nie, Bidong Zhang, Andre Izidoro, Paul D. Asimow
How and where the first generation of inner solar system planetesimals formed remains poorly understood. Potential formation regions are the silicate condensation line and water-snowline of the solar protoplanetary disk. Whether the chemical compositions of these planetesimals align with accretion at the silicate condensation line (water-free and reduced) or water-snowline (water-bearing and oxidized) is, however, unknown. Here we use Fe/Ni and Fe/Co ratios of magmatic iron meteorites to quantify the oxidation states of the earliest planetesimals associated with non-carbonaceous (NC) and carbonaceous (CC) reservoirs, representing the inner and outer solar system, respectively. Our results show that the earliest NC planetesimals contained substantial amounts of oxidized Fe in their mantles (3-19 wt% FeO). In turn, we argue that this required the accretion of water-bearing materials into these NC planetesimals. The presence of substantial quantities of moderately and highly volatile elements in their parent cores is also inconsistent with their accretion at the silicate condensation line and favors instead their formation at or beyond the water-snowline. Similar oxidation states in the early-formed parent bodies of NC iron meteorites and those of NC achondrites and chondrites with diverse accretion ages suggests that the formation of oxidized planetesimals from water-bearing materials was widespread in the early history of the inner solar system.
 
The more we understand our surroundings the closer we understand our origin.

[Submitted on 14 May 2015]

Quasar Quartet Embedded in Giant Nebula Reveals Rare Massive Structure in Distant Universe​

Joseph F. Hennawi (1), J. Xavier Prochaska (2), Sebastiano Cantalupo (2 and 3), Fabrizio Arrigoni-Battaia (1) ((1) Max Planck Institute for Astronomy, (2) UCO Lick -- Observatory/UC Santa Cruz, (3) ETH Zurich)
All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-alpha emission at redshift z ~ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ~10^-7, implying a physical connection between Lyman-alpha nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (~ 10^11 solar masses) of cool dense (volume density ~1 cm^-3) gas, which is in conflict with current cosmological simulations.
 
Our Solar System has the origin of being part of the bigger picture.

[Submitted on 21 May 2006 (v1), last revised 12 Sep 2006 (this version, v2)]

Characterization of jovian plasma embedded dust particles​

Amara L. Graps (INAF-IFSI, Rome, Italy)
As the data from space missions and laboratories improve, a research domain combining plasmas and charged dust is gaining in prominence. Our solar system provides many natural laboratories such as planetary rings, comet comae and tails, ejecta clouds around moons and asteroids, and Earth's noctilucent clouds for which to closely study plasma-embedded cosmic dust. One natural laboratory to study electromagnetically-controlled cosmic dust has been provided by the Jovian dust streams and the data from the instruments which were on board the Galileo spacecraft. Given the prodigious quantity of dust poured into the Jovian magnetosphere by Io and its volcanoes resulting in the dust streams, the possibility of dusty plasma conditions exist. This paper characterizes the main parameters for those interested in studying dust embedded in a plasma with a focus on the Jupiter environment. I show how to distinguish between dust-in-plasma and dusty-plasma and how the Havnes parameter P can be used to support or negate the possibility of collective behavior of the dusty plasma. The result of applying these tools to the Jovian dust streams reveals mostly dust-in-plasma behavior. In the orbits displaying the highest dust stream fluxes, portions of orbits E4, G7, G8, C21 satisfy the minimum requirements for a dusty plasma. However, the P parameter demonstrates that these mild dusty plasma conditions do not lead to collective behavior of the dust stream particles.
 
I came across this paper. Interesting to read.

Submitted on 20 Sep 2024]

Sakurai's object: a [WC] star in a new bipolar nebula after a VLTP​

Griet Van de Steene, Peter van Hoof, Stefan Kimeswenger, Marcin Hajduk, Daniel Tafoya, Jesus Toala, Albert Zijlstra, Daniela Barria
Optical spectra of the Very Late Thermal Pulse (VLTP) object V4334 Sgr have shown a rapidly changing spectrum resulting from shocks in the outflow, which created a new bipolar nebula inside the old nebula. We see C II and C III emission lines emerging typical of a [WC 11-10]-type star. The strong increase of [O III] and [S III] emission lines indicate the possible onset of photoionisation in the new ejecta.
 
Interesting reading

[Submitted on 12 Sep 2024]

Impact sculpting of the early martian atmosphere​

Oliver Shorttle, Homa Saeidfirozeh, Paul Rimmer, Vojtĕch Laitl, Petr Kubelík, Lukáš Petera, Martin Ferus
Intense bombardment of solar system planets in the immediate aftermath of protoplanetary disk dissipation has played a key role in their atmospheric evolution. During this epoch, energetic collisions will have removed significant masses of gas from rocky planet atmospheres. Noble gases are powerful tracers of this early atmospheric history, xenon in particular, which on Mars and Earth shows significant depletions and isotopic fractionations relative to the lighter noble gasses. To evaluate the effect of impacts on the loss and fractionation of xenon, we measure its ionization and recombination efficiency by laser shock and apply these constraints to model impact-driven atmospheric escape on Mars. We demonstrate that impact bombardment within the first 200 to 300Myr of solar system history generates the observed Xe depletion and isotope fractionation of the modern martian atmosphere. This process may also explain the Xe depletion recorded in Earth's deep mantle and provides a latest date for the timing of giant planet instability.
 
The interstellar matter comes from Active and exploding stars.
This matter is added to Solar Systems that pass through the media.

[Submitted on 15 Sep 2024]

Mass-loss Rate of Highly Evolved Stars in the Magellanic Clouds​

Jing Wen, Ming Yang, Jian Gao, Bingqiu Chen, Yi Ren, Biwei Jiang
Asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs) exhibit significant mass loss phenomena and are considered important sources of interstellar dust. In this work, we employed an uniform method of spectral energy distribution fitting to analyze a large, and hence statistically significant, sample of approximately 40,000 RSGs and AGBs in the Magellanic Clouds (MCs), providing a new catalog of evolved stars that includes stellar parameters and dust properties. Our results reveal that the total dust-production rate (DPR) of the Large Magellanic Cloud is approximately 9.69×10−6M⊙yr−1, while it is around 1.75×10−6M⊙yr−1 for the Small Magellanic Cloud, with a few stars significantly contributing to the total DPR. No significant differences were observed in the contributions to DPR from carbon-rich and oxygen-rich (O-rich) evolved stars in the MCs. We explored the relations between stellar parameters (luminosity, infrared color, period, amplitude) and mass-loss rate (MLR) for evolved stars. A prominent turning point at log(L/L⊙)≈4.4 appears in the luminosity-MLR diagram of RSGs, potentially related to the mass-loss mechanism of RSGs. The luminosity-MLR relation of AGBs is highly scattered. The DPR of AGBs shows a clear change with pulsation period and amplitude, with DPR exhibiting a drastic increase at pulsation periods of approximately 300 days and I-band amplitudes greater than 0.5 mag. Metallicity has some impact on the DPR of O-rich stars, with lower metallicity seeming to result in lower mean DPR and a higher proportion of optically thin stars.
 
Scientists are on the path to understanding Interstellar matter.
At the end of the day.
Space travel will need info on whats out there.

[Submitted on 10 Sep 2024]

Discovery of a Bow-Shock Nebula around the Z Cam-type Cataclysmic Variable SY Cancri​

Howard E. Bond (1,2), Calvin Carter (3), David F. Elmore (4), Peter Goodhew (5), Dana Patchick (6), Jonathan Talbot (7) ((1) Penn State University, (2) STScI, (3) Dallas, TX, (4) National Solar Observatory, (5) Deep Space Imaging Network, (6) Deep Sky Hunters Consortium, (7) Stark Bayou Observatory)
We report the serendipitous discovery of a bow-shock nebula around the cataclysmic variable (CV) SY Cancri. In addition, SY Cnc lies near the edge of a faint Halpha-emitting nebula with a diameter of about 15'. The orientation of the bow shock is consistent with the direction of SY Cnc's proper motion. Nebulae are extremely rare around CVs, apart from those known to have undergone classical-nova (CN) outbursts; bow shocks and off-center nebulae are even more unusual. Nevertheless, the properties of SY Cnc and its nebulosity are strikingly similar to those of V341 Ara, another CV that is also associated with a bow shock and is likewise off-center with respect to its faint Halpha nebula. Both stars are binaries with optically thick accretion disks, belonging to the classes of Z Cam CVs or nova-like variables. We discuss three scenarios to explain the properties of the nebulae. They may have resulted from chance encounters with interstellar gas clouds, with the stars leaving in their wakes material that is recombining after being photoionized by UV radiation from the CVs. Alternatively, the large nebulae could be ejecta from unobserved CN outbursts in the recent past, which have been decelerated through collisions with the interstellar medium (ISM), while the stars continue to snowplow through the gas. Or the faint Halpha nebulae may be ambient ISM that was shock-ionized by a CN outburst in the past and is now recombining.
 
Free-floating objects in spce make it difficult for future space travel.



[Submitted on 27 Sep 2024]

The origin of free-floating objects in the Galaxy​

Simon F. Portegies Zwart (Leiden Observatory)
The Milky way Galaxy is brimming with free-floating objects, including stars, planets and planetesimals. For the purpose of this chapter, we define a free-floating object as a solid body that is not orbited by a considerably more massive body. A planet then is considered free floating if it is not orbiting a star but it may be orbiting another planet. A binary planet, or planet-moon pair that is not orbiting a star, is then considered free floating.
Most free-floating objects are not born as such because most objects form in some sort of coordinated environmental effort, such as a star forming region or a circum-stellar disk. Free-floating stars then originate from dissolved clusters. Free floating planets are ejected from their parent star in an internal dynamical encounter with another planet or stripped from the star by other means such as a supernova or a nearby passing star. Free floating (interstellar) planetesimals probably form in a similar fashion as free-floating planets.
The number of free-floating objects in the Galaxy can be large. With billions of stars and planets, and trillions of interstellar planetesimals. Although free-floating planets appear to be quite common (a few hundred have been observed), only two interstellar planetesimals have been discovered so far. The expectation, however, is that they outnumber the stars in the Galaxy by a considerable margin. We expect them to be found more frequently once large new instruments come online, such as the Vera Cooper Rubin Observatory.
 

TRENDING THREADS

Latest posts