I suggest at least 4 spatial dimensions, but it depends on the context.There are only 3 spatial dimensions. One temporal. When scientists say they need many more dimensions to describe something they are talking about things like temperature, pressure, smell, whatever. Note: It is more complicated than that but that's your basic idea.
Additional dimensions of space would be outside of our physics. Aka "magic". I don't buy into it.
Nicely stated, though I'm no expert on GR.One could model a complex gravitational field as a bunch of clouds of increasing density wherever the field is stronger. Geodesics would follow lines of constant density. It would not be very intuitive. It would only work well if you had 3D glasses and could walk around inside it, as some areas would block your visibility. This is the advantage of the sheet model, it lends itself well to a flat piece of paper.
This is not an actual contraction of space, but a defect in humanity's mathematical abilities that results in incorrect geometric renderings. I don't know if we would be able to fix this defect.In a Cartesian coordinate system if one telescopes the demarcations together that would shrink the spatial reference frame.
Yes, a straight vector indeed! But not fast enough to escape gravity. Therefore it falls (continually falling) compensated by the straight vector resulting in an orbit. There is then only the imaginary centripetal force caused by the straight vector (as if trying always to escape. I must apologise if I misunderstand your commentOne can also use the centripetal force/effect as well, to detect curvature. Does the Earth in its orbit of the Sun exhibit any centripetal force/effect?
Does gravity seem increased at equitorial noon and decreased at equatorial midnight or not.
If not that would mean our orbit was actually traveling a straight vector.
I've always wondered if The gravity of a mass can have a rebound effect on massive objects that cause a rounded bend in space, like a trampoline, as the mass shrinks will the bend in space snap back, speeding and slowing objects in its wake as it springs."Slower time makes moving things (to themselves) seem to travel faster, which is equivalent to shrinking space." - Questioner
It's the other way around, mass slows time only for someone observing from afar. To the person near the mass, time moves at normal speed.
Interesting idea.I've always wondered if The gravity of a mass can have a rebound effect on massive objects that cause a rounded bend in space, like a trampoline, as the mass shrinks will the bend in space snap back, speeding and slowing objects in its wake as it springs.
Not needs to wondering. Just read.I've always wondered if The gravity of a mass can have a rebound effect on massive objects that cause a rounded bend in space, like a trampoline, as the mass shrinks will the bend in space snap back, speeding and slowing objects in its wake as it springs.