Exoplanet studies now are very interesting. Here is a new report on exoplanet masses and densities using 10^6 number in simulations. Efforts to quantify mass, density, and radius, exoplanets with radii 2 or less earth radii.
The Nominal Range of Rocky Planet Masses, Radii, Surface Gravities and Bulk Densities,
https://arxiv.org/abs/2212.03934
My notes. From the 41-page PDF report. “1. INTRODUCTION The compositions of small (R <= 2Rearth) exoplanets provide considerable information about their formation (e.g., Unterborn et al. 2018a; Adibekyan et al. 2021), interior dynamics (Ballmer et al. 2017; Spaargaren et al. 2020), and potential habitability (e.g., Unterborn et al. 2022). Attempts to quantify the composition of small exoplanets has been ongoing for over a decade, by attempting to match a planet's measured density to those predicted by mass-radius models (e.g., Valencia et al. 2006; Seager et al. 2007; Valencia et al. 2007a,b; Zeng & Seager 2008; Dorn et al. 2015; Unterborn et al. 2016, 2018a; Huang et al. 2022). Recent work has used mass-radius modeling to identify high-density super-Mercuries (e.g., Bonomo et al. 2019) as well as small planets that contain significant surface water (e.g., Unterborn et al. 2014) or thick atmosphere (e.g, Brinkman et al. 2022), which lower their bulk densities considerably, making them water-worlds and mini-Neptunes, respectively.”
"Table 1. Sample of planets with uncertainties less than 30% in both mass and radius with the highest and lowest likelihood of being in NRPZ"
"Table 2. Sample of well-characterized exoplanets with available host-star abundances. Host star elemental ratios are expressed as molar ratios derived using the solar abundances of Lodders et al. (2009). All masses and radii taken from the NASA Exoplanet Archive (Akeson et al. (2013), 10.26133/NEA1) and stellar abundance data are from the Hypatia Catalog. The classifications in the last column are illustrated in Figure 21, where SM = Super-Mercury, and IHS = indistinguishable from host star. CMF values correspond to the median values and 1sigma confidence intervals"
Another note I make, presently 133 exoplanets have atmospheres studied and listed,
http://research.iac.es/proyecto/exoatmospheres/index.php This is another critical parameter when thinking about if any exoplanets are earthlike.
The NASA exoplanet archive site presently shows 1474 exoplanets with radius 2 or less earth radii.
NASA Exoplanet Archive (caltech.edu)
The exoplanet.eu site shows 1404,
The Extrasolar Planets Encyclopaedia (exoplanet.eu)
Exoplanet studies like this raise questions about are there indeed, habitable earthlike planets out there? Knowing and confirming specific properties of exoplanets is required to answer. Astrobiology at some point, must show biological life exists, somewhere other than here on Earth and abiogenesis doctrine for the origin of life on Earth needs this too.