The question whether Axion Gluon matter could be Dark Matter, is worth reaching. Other threads relating to this topic are worth reading.
[Submitted on 2 May 2023 (v1), last revised 4 May 2023 (this version, v2)]
- We predicted years ago that dark matter behaves wave-like
Last month, a paper was published in Nature Astronomy by the University of Hong Kong, proving... -
Dark Matter
Could dark matter be something that contains particles that we haven't yet discovered or that we... - M
Why Dark Matter cannot be Axion or any small particle with mass?
In April 2023, the University of Hong Kong published a groundbreaking paper revealing that dark... - B
Resolution of the Dark Matter Mystery
Dear Space.com, I have by several qualitatively different sources of evidence (planet 9...
[Submitted on 2 May 2023 (v1), last revised 4 May 2023 (this version, v2)]
What can a GNOME do? Search targets for the Global Network of Optical Magnetometers for Exotic physics searches
S. Afach, D. Aybas Tumturk, H. Bekker, B. C. Buchler, D. Budker, K. Cervantes, A. Derevianko, J. Eby, N. L. Figueroa, R. Folman, D. Gavil'an Martin, M. Givon, Z. D. Grujic, H. Guo, P. Hamilton, M. P. Hedges, D. F. Jackson Kimball, S. Khamis, D. Kim, E. Klinger, A. Kryemadhi, X. Liu, G. Lukasiewicz, H. Masia-Roig, M. Padniuk, C. A. Palm, S. Y. Park, H. R. Pearson, X. Peng, M. Pospelov, S. Pustelny, Y. Rosenzweig, O. M. Ruimi, T. Scholtes, P. C. Segura, Y. K. Semertzidis, Y. C. Shin, J. A. Smiga, Y. V. Stadnik, J. E. Stalnaker, I. A. Sulai, D. Tandon, K. Vu, A. Weis, A. Wickenbrock, T. Z. Wilson, T. Wu, W. Xiao, Y. Yang, D. Yu, F. Yu, J. Zhang, Y. ZhaoNumerous observations suggest that there exist undiscovered beyond-the-Standard-Model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with Standard Model particles in many different ways and assume a variety of possible configurations. Here we present an overview of the Global Network of Optical Magnetometers for Exotic physics searches (GNOME), our ongoing experimental program designed to test a wide range of exotic physics scenarios. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. We survey the temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion-like particle domain walls), axion-like particle stars, solitons of complex-valued scalar fields (Q-balls), stochastic fluctuations of bosonic dark matter fields, a solar axion-like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers.