The space.com report states "Shortly after the mammoth collision occurred, Earth was just able to stay together while pieces of both planets that were blasted into space coalesced to form the moon. Both of these blobby bodies had a mix of light and heavy chlorine isotopes at first, but that mix began to change as Earth's gravity pulled on the newly forming moon."
My observation, a great deal of Theia original chemical composition and the proto-Earth is required to be known in the giant impact model to explain such chemical differences. Oxygen isotopes must be explained that Theia and the proto-Earth had a similar chemical composition when they formed in the protoplanetary disks, Oxygen Isotopes and the Moon-Forming Giant Impact,
https://ui.adsabs.harvard.edu/abs/2001Sci...294..345W/abstract, October 2001. Theia elements are not yet identified in lunar rocks, Identification of the giant impactor Theia in lunar rocks,
https://ui.adsabs.harvard.edu/abs/2014Sci...344.1146H/abstract, June 2014
Carbon in the Moon is a problem too for Theia impact, "The findings by the researchers suggest that the moon has a large amount of ancient carbon beneath its surface, and it has likely been there since the moon was formed. How it could have persisted on a very hot early moon remains a mystery.", Carbon emissions on the moon put theory of moon birth in doubt,
https://phys.org/news/2020-05-carbon-emissions-moon-theory-birth.html
Metal content differences cause problems too, Higher concentration of metal in Moon's craters provides new insights to its origin,
https://phys.org/news/2020-07-higher-metal-moon-craters-insights.html
The giant impact model is the only game in town now it seems but studies continue. I note that the Moon forms after Theia impact near 3 earth radii and moves out to some 10 earth radii over a short period of time. However, testing and showing the Moon actually orbited Earth so close has not been done.