Harry, I am afraid that your posts to this thread are only succeeding in telling most readers that there are other people working on other theories than the Big Bang and General Relativity, and that most of those theories involve quantum mechanics in some way. The links that you post include claims of success in mathematically explaining various observations, particularly in situations where BBT and GR "break down" mathematically. But, those papers are not (yet?) mainstream cosmological concepts, and they have their critics among knowledgeable experts.
So, as to what those conceptualized alternative physical principles really are, and how to think about them, it is presented in your links in language that most people are not familiar with. So I doubt that most readers here actually get very far into reading your links on this subject. In that sense, just posting links is just adding noise without message. At least some of the links do say something about addressing specific unresolved issues with BBT and GR, seeming to claim progress in understanding that allow readers to understand the claim, even if not the basis for it.
But, to actually get a conversation going here, it would help if you could provide an explanation, or a link to an explanation, of the basic concepts underpinning the theories in your links.
I personally do understand that theorists are trying to use the quantum coupling effects actually observed in Bose-Einstein condensates of extremely cold and low density gases in a lab to gain understanding of plausible quantum coupling in similar "condensates" of subatomic particles in extremely hot and high density in the cores of stars and even whatever is inside a black hole. And, I understand that from reading an postings and following a link here on Space.com. See https://science.nasa.gov/science-news/science-at-nasa/2002/03apr_neutronstars .
But, I do get lost in the specialized quantum mechanics jargon and specialized mathematical notations used in describing the chiral superfields that are so often spoken about to say how those theories work. As I currently understand it, quantum physicists have proposed up to 14 dimensions for space/time, with most of the ones other than the familiar x, y and z being limited to extremely tiny extents relevant only to quantum mechanical concepts. So, those are the "super" as opposed to the "sub" set of dimensions. And the fields for those particles in those dimensions are then the "superfields". In addition, I THINK that I understand that "chiral" super fields are ones that require another superfield to counteract it to maintain symmetry in the physical models.
But, how specific superfields act in specific dimensions on specific particles is not within my current understanding. I am not sure I even know which of your links deals with what number of dimensions in different theories.
So, to get this thread to succeed in meeting the intended purpose of this forum, can we please get some helpful tutoring?
So, as to what those conceptualized alternative physical principles really are, and how to think about them, it is presented in your links in language that most people are not familiar with. So I doubt that most readers here actually get very far into reading your links on this subject. In that sense, just posting links is just adding noise without message. At least some of the links do say something about addressing specific unresolved issues with BBT and GR, seeming to claim progress in understanding that allow readers to understand the claim, even if not the basis for it.
But, to actually get a conversation going here, it would help if you could provide an explanation, or a link to an explanation, of the basic concepts underpinning the theories in your links.
I personally do understand that theorists are trying to use the quantum coupling effects actually observed in Bose-Einstein condensates of extremely cold and low density gases in a lab to gain understanding of plausible quantum coupling in similar "condensates" of subatomic particles in extremely hot and high density in the cores of stars and even whatever is inside a black hole. And, I understand that from reading an postings and following a link here on Space.com. See https://science.nasa.gov/science-news/science-at-nasa/2002/03apr_neutronstars .
But, I do get lost in the specialized quantum mechanics jargon and specialized mathematical notations used in describing the chiral superfields that are so often spoken about to say how those theories work. As I currently understand it, quantum physicists have proposed up to 14 dimensions for space/time, with most of the ones other than the familiar x, y and z being limited to extremely tiny extents relevant only to quantum mechanical concepts. So, those are the "super" as opposed to the "sub" set of dimensions. And the fields for those particles in those dimensions are then the "superfields". In addition, I THINK that I understand that "chiral" super fields are ones that require another superfield to counteract it to maintain symmetry in the physical models.
But, how specific superfields act in specific dimensions on specific particles is not within my current understanding. I am not sure I even know which of your links deals with what number of dimensions in different theories.
So, to get this thread to succeed in meeting the intended purpose of this forum, can we please get some helpful tutoring?